Xarxes de Computadors

Tema 1 - Introducción

Temario

- ▶ I) Introducción
- 2) Redes IP
- 3) Protocolos UDP y TCP
- ▶ 4) Redes de área local (LAN)
- ▶ 5) Aplicaciones de red

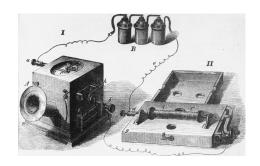
Temario

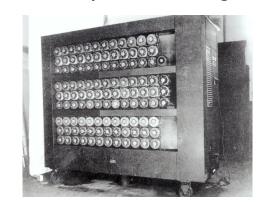
- ▶ I) Introducción
- 2) Redes IP
- 3) Protocolos UDP y TCP
- ▶ 4) Redes de área local (LAN)
- ▶ 5) Aplicaciones de red

Tema 1 – Introducción

- a) Un poco de historia de redes e Internet
- b) Organización actual
- c) Modelo ISO/OSI
- d) Organismos de estandarización
- e) Modelo TCP/IP
- ▶ f) Paradigma cliente-servidor

1830: Nace el telégrafo

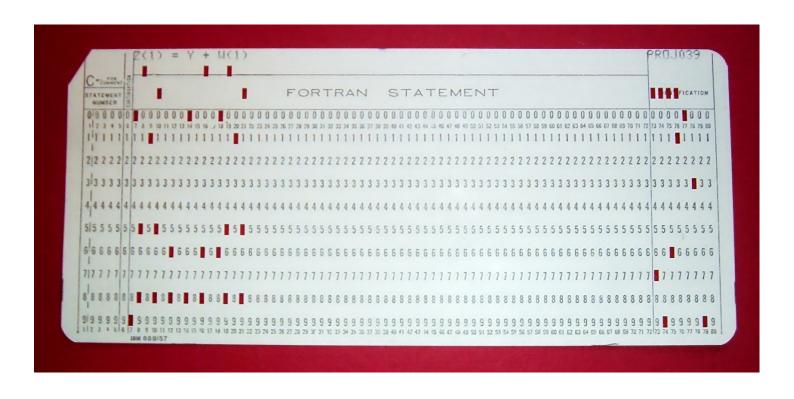

1833: Ier ordenador mecánico


1866: ler cable transatlántico

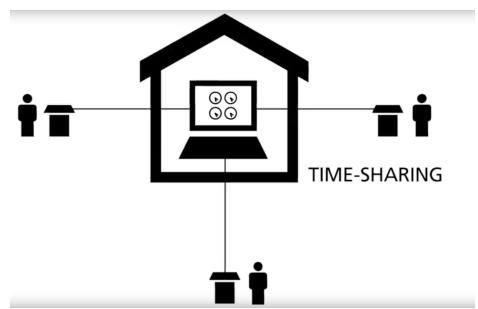
1875: Invención del teléfono


1936: Maquina de Turing

1944: IBM fabrica Harvard Mark I (electromecánico)


1951: 1er ordenador comercial UNIVAC

- Años 50, problema
 - → Un único proceso activo → batch processing
 - La programación se hace a parte y luego se inserta manualmente en el ordenador para que la ejecute
 - ▶ Tarjetas perforadas
 - Muy poco eficiente ya que tanta capacidad de calculo queda inutilizada


▶ Tarjeta perforada de un programa en Fortran (años 60)

Año 1957, solución

- Time sharing
- Se conectan terminales a los ordenadores a través de redes
- Varios usuarios pueden programar en su terminal y enviar/recibir datos del ordenador central
 - Entorno reducido a un edificio, un campus, una planta, etc.
 - Nacen las primeras redes de área local (LAN)
 - Cada entidad pero crea su propia red, tecnología y protocolos

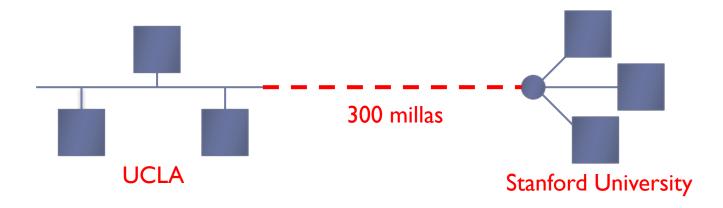
Años 60, problema

- Ordenadores muy grandes, absolutamente no portátiles!
- Como hacer para pasar información de un ordenador a otro sin necesidad de copiar cada vez la información en un soporte y transportarla manualmente a otro sitio
 - Tarjetas perforadasCintas magnéticas

Muy lentas ambas

Cintas magnéticas

▶ Año 1962, tensión EEUU - Rusia


- Crisis de los misiles en Cuba
- Miedo en EEUU de posible ataques nucleares a sus centros
- Ordenadores usados para cálculos de trayectorias de misiles, archivo de datos económico y financiero, cálculos para nuevas armas, etc.

Los militares piensan

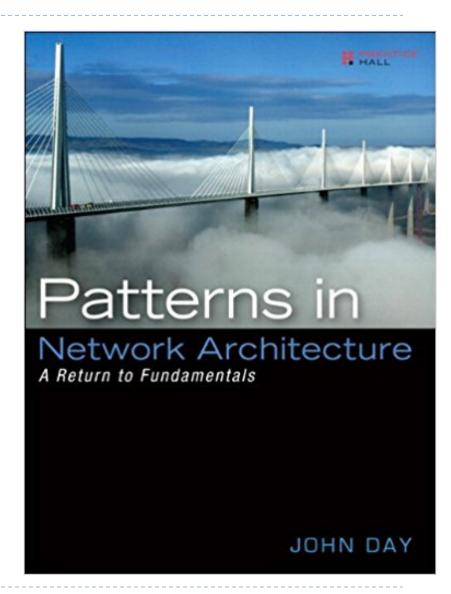
- Hay que distribuir esta información más fácilmente entre centros distintos!
- Crean y financian el proyecto DARPA

Siguiente problema fue... ¿y para comunicarse entre campus?

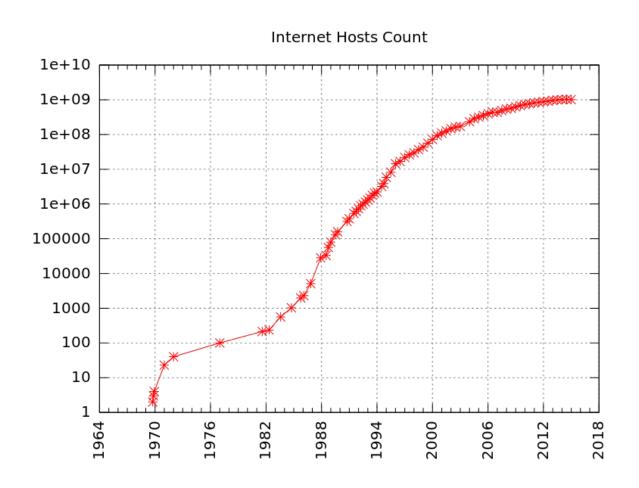
- Una serie de artículos "Intergalactic Computer Networks" (8/1962), propone unas ideas que dan el vía al proyecto ARPANET
 - Defense Advanced Research Project Agency (DARPA) red de (D)ARPA
 - Dbjetivo es conectar universidades, centro de investigación y centros militares
 - Los centros militares se mueven a una red propia en el 1983
 - DARPA → ARPA

- Se desarrolla un conjunto de protocolos de comunicación basado en la transmisión y conmutación de paquetes
 - Nace el TCP/IP
 - Unidad base: paquete (o datagrama)
 - Diferente de la red telefónica de aquel momento que se basa en la conmutación de circuitos
 - Se integra en UNIX (Berkeley distribution, BSD)
 - Primer mensaje login el 29/10/1969 (se había llegado a luna 3 meses antes)
 - Al primer intento, se envían la l y la o y el sistema cae
 - ▶ Al cabo de I hora se consigue el envío completo
 - Conexión permanente establecida el 21/11/1969
 - ▶ 1971, primer correo electrónico
 - Desarrollo de nuevas aplicaciones: Telnet, ftp, gopher, etc.

- El éxito de esta idea mueve los grandes y pequeños fabricantes
- A lo largo de los años 60, 70 y 80, IBM, DEC, Intel, Apple, etc. crean nuevas tecnologías de red
- Cada empresa apuesta por su protocolo propietario
- No hay compatibilidad entre ellos ni con ARPANET
- Se hace inviable el mantenimiento de todas estas soluciones paralelas
- En los años 80 se decide apostar por la solución TCP/IP
- ▶ En el I/I/1983,TCP/IP se convierte en el estándar para las redes y ARPANET se convierte en Internet



Interconexión de redes Inter + networks → Internetworks


- ▶ En el 1990, Internet se abre al publico y al uso comercial
- Nacen los Internet Service Providers (ISP)
 - Proveedores de servicios de Internet
- y los Network Service Providers (NSP)
 - Proveedores de servicios de red
- Las hasta ahora operadoras de telefonía se convierten en operadoras de telecomunicaciones
- https://www.youtube.com/watch?v=9hIQjrMHTv4

Patterns in Network Architecture: A Return to Fundamentals (paperback): A Return to Fundamentals, 1st Edition, Prentice Hall, 2008. by John Day

Recordatorio

10¹⁸: exa (E)

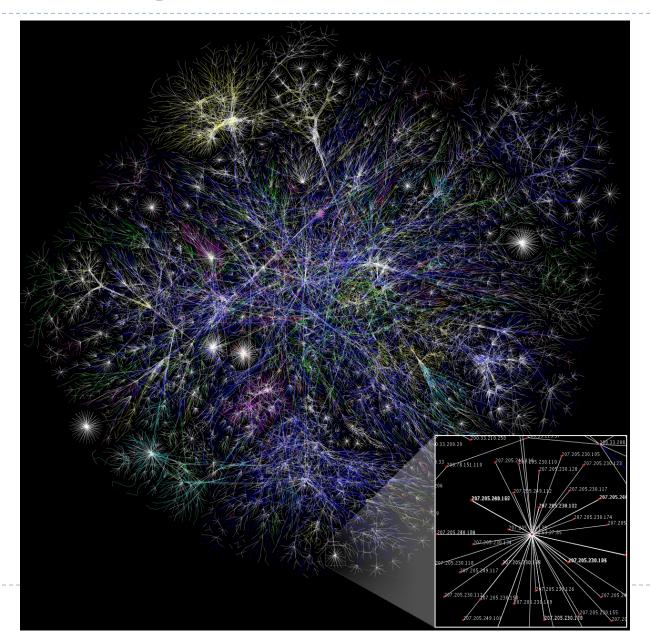
10¹⁵: peta (P)

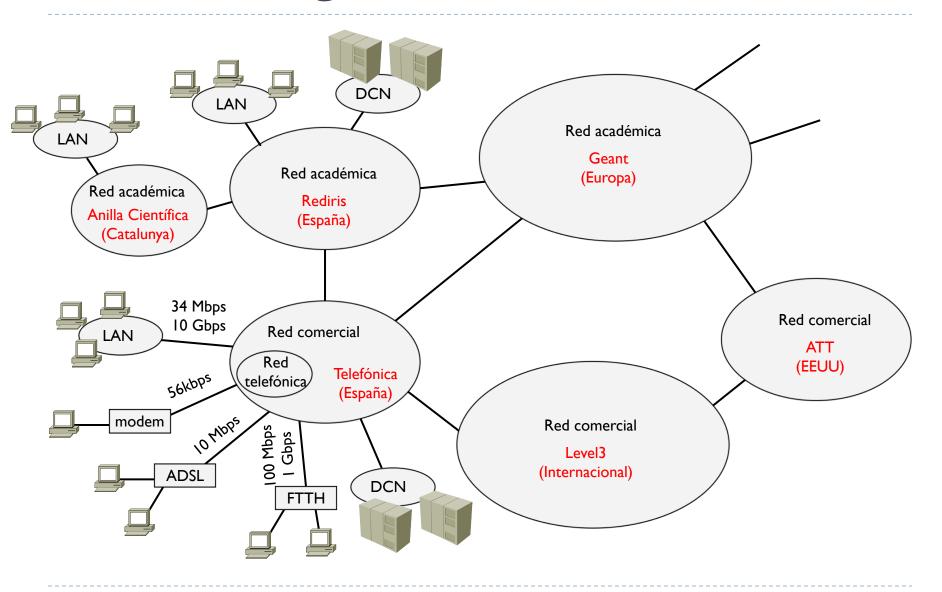
10¹²: tera (T)

109: giga (G)

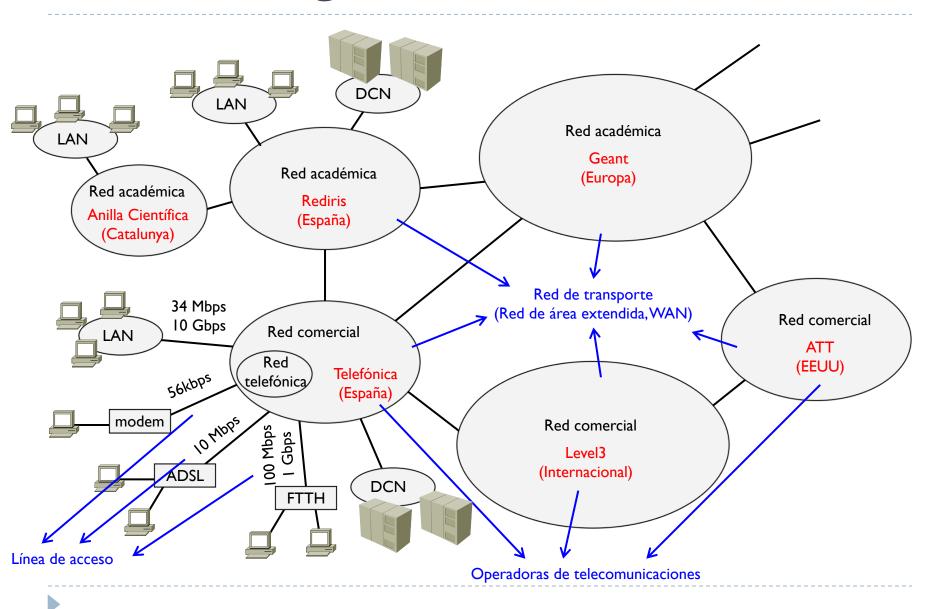
10⁶: mega (M)

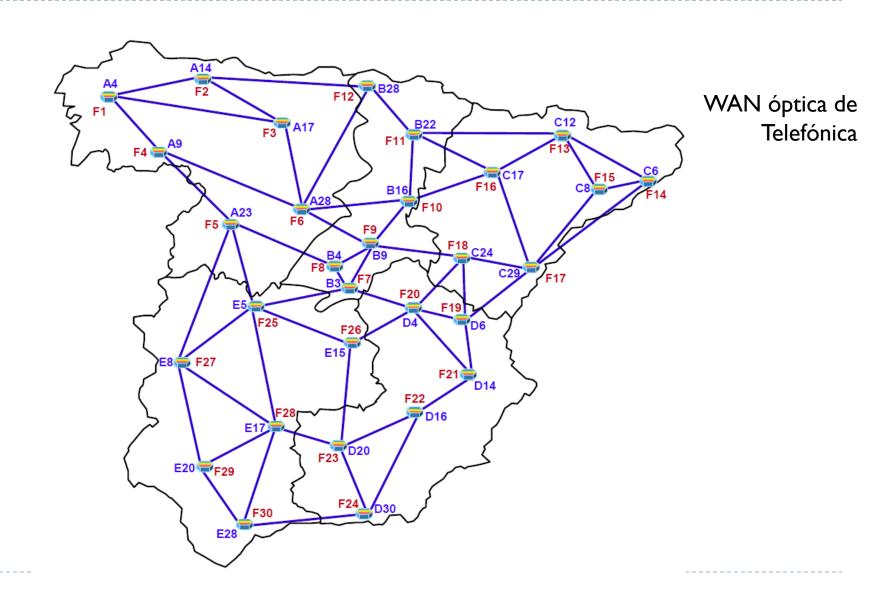
10³: kilo (k)

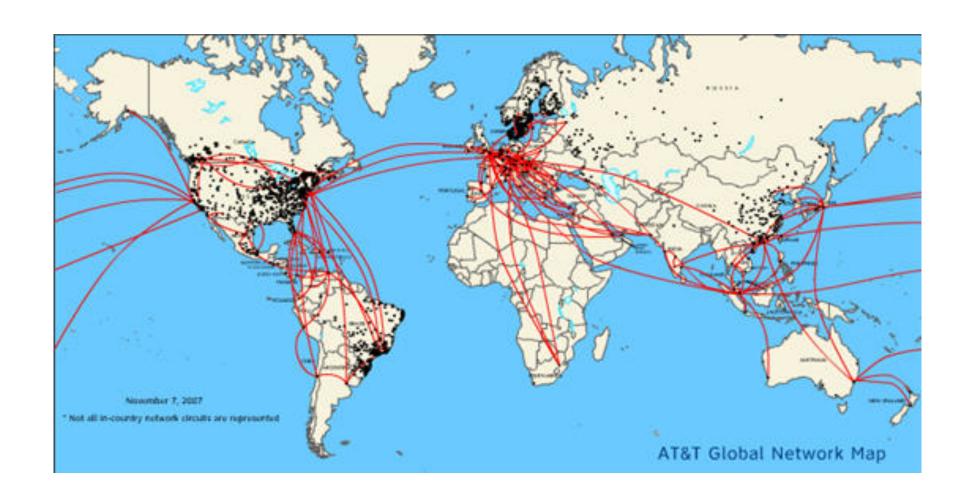

10⁻³: mili (m)

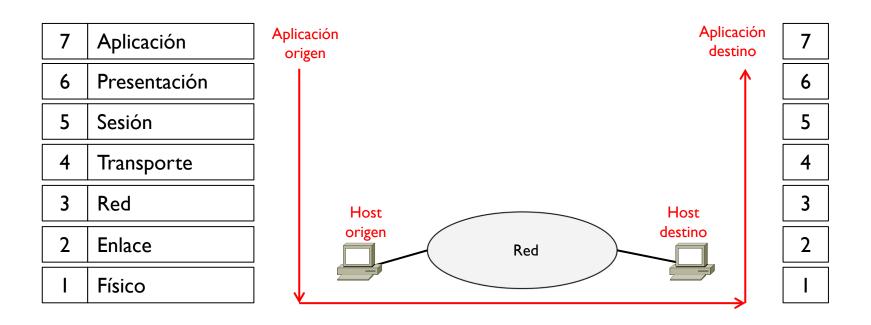

10⁻⁶: micro (μ)

10⁻⁹: nano (n)


10⁻¹²: pico (p)







- ¿cómo puede funcionar correctamente una red tan compleja?
- A principio, cada entidad (empresa, universidad, centro, etc.) creó su propia red con sus mecanismos y protocolos
 - Conjunto heterogéneo de varias redes distintas, imposible la comunicación
 - Se ha homogeneizado la estructura definiendo estándares para que las redes de entiendan entre sí
- Se define un modelo de referencia ISO/OSI (Open System Interconnection)
 - Basado en una pila de 7 niveles o capas
 - Describe como se desplaza la información de una aplicación origen a la red y de esta a la aplicación destino
 - Define y separa funcionalidades para facilitar su desarrollo, posibles actualización y mejoras

- Cada capa define un conjunto de funcionalidades especificas y exclusivas
 - Todas juntas permiten una comunicación entre hosts
- ¿Hay que saber estas 7 capas? SI

 Modelo suficientemente genérico que permite continuas mejoras sin tener que cambiarlo todo

¿por qué?

- Cada capa cumple solo una parte de todo el problema
- Cada capa proporciona un servicio sin saber que hacen las otras (independencia entre capas)

Ejemplos

- La capa 3 (red) se ocupa de entregar la información lo mejor que puede desde un host origen a un host destino
- No interesa

▶ La velocidad de transmisión
→ Físico

Si se usa un cable o una antena → Físico

▶ Que aplicación está generando esta información → Aplicación

▶ Que lleva esta información (texto, audio, video, etc.) → Presentación

ightarrow Si se pierde ightarrow Transporte

▶ Si crea una contención con otra información en una red → Enlace

7	Aplicación	
6	Presentación	
5	Sesión	
4	Transporte	

Capas superiores

- Se implementan en los dos extremos (origen y destino) de la comunicación
- No importa (demasiado) lo que hay en el medio entre origen y destino
- La funcionalidades son implementadas mayoritariamente en software

Aplicación (tema 5)

- Protocolos que utilizan las aplicaciones para intercambiar datos
- Ejemplos: HTTP, FTP, SMTP, POP3, DNS, IMAP, etc.

Presentación

- Representación (formato) de los datos generados por la aplicación y eventualmente cifrado y compresión
- Ejemplos: ASCII, JPEG, MPEG

Sesión

- Establecer, gestionar y cerrar los diálogos entre los dos extremos
- Ejemplos: RPC, SPC, ASP

7	Aplicación	
6	Presentación	
5	Sesión	
4	Transporte	

Capas superiores

- Se implementan en los dos extremos (origen y destino) de la comunicación
- No importa (demasiado) lo que hay en el medio entre origen y destino
- La funcionalidades son implementadas mayoritariamente en software

Transporte (tema 3)

- Permite la coexistencia de mas de una comunicación a la vez en un mismo extremo por ejemplo un usuario puede mirar una web y recibir un correo o un mensaje en skype
- Asegura la fiabilidad de la comunicación entre los dos extremos y proporciona un mecanismo de recuperación en caso de perdida (solo para aquellas aplicaciones que lo necesitan)
- Ejemplos: TCP, UDP, SPX, SCTP

3	Red
2	Enlace
ı	Físico

Capas inferiores

- Se implementan en los dos extremos (origen y destino) y en algunos dispositivos específicos intermedios
- Muchas funcionalidades se implementan en hardware

Red (tema 2)

- Identificar los elementos de red y encaminar la información entre origen y destino a través de redes
- Dispositivo específico: router
- Ejemplos: IP, IPX, APPN, SNA

Enlace (tema 4)

- Regular el acceso al medio de transmisión y detecta eventuales errores de transmisión
- Dispositivo específico: switch (conmutador)
- Ejemplos: Ethernet, WiFi, bluetooth, WiMax, Zegbee

Físico

- Regula las características físicas del medio de transmisión y de los dispositivos, por ejemplo tipo de cable, potencia de la señal, velocidad de transmisión, tipo de antena, etc.
- Dispositivos específicos: hub, modem, repetidor

7	Aplicación	
6	Presentación	
5	Sesión	
4	Transporte	
3	Red	
2	Enlace	
I	Físico	

POP3

ASCII

RPC

TCP

IP

Ethernet

100baseTX

 Se está recibiendo un correo de un servidor usando POP3 que contiene texto en mi portátil conectado al ADSL de casa por un cable UTP a 100 Mbps

7	Aplicación	
6	Presentación	
5	Sesión	
4	Transporte	
3	Red	
2	Enlace	
I	Físico	

POP3
ASCII
RPC
TCP
IP
WiFI
802.11g

 Se está recibiendo un correo de un servidor usando POP3 que contiene texto en mi portátil conectado al ADSL de casa a través de la WiFi a 54 Mbps

7	Aplicación	
6	Presentación	
5	Sesión	
4	Transporte	
3	Red	
2	Enlace	
I	Físico	

POP3

JPEG

RPC

TCP

IP

WiFi

802.11g

Se está recibiendo un correo de un servidor usando POP3 que contiene una imagen JPEG en mi portátil conectado al ADSL de casa a través de la WiFi a 54 Mbps

7	Aplicación
6	Presentación
5	Sesión
4	Transporte
3	Red
2	Enlace
I	Físico

JPEG
RPC
TCP
IP
WiFi
802.11g

Se está recibiendo un correo de un servidor usando IMAP que contiene una imagen JPEG en mi portátil conectado al ADSL de casa a través de la WiFi a 54 Mbps

Tema 1 – Organismos de estandarización

IETF (Internet Engineering Task Force)

- <u>http://www.ietf.org</u> → fabricantes y centros de investigación (principalmente)
- Frupos de trabajo que discuten y generan los estándares a partir del nivel 3 para arriba
- Los estándares se publican en documentos públicos llamados RFC (Request for Comment)
- RFC 791 y RFC 793 son la base de Internet, documentos que estandarizan IP y TCP respectivamente

IAB (Internet Activities Board)

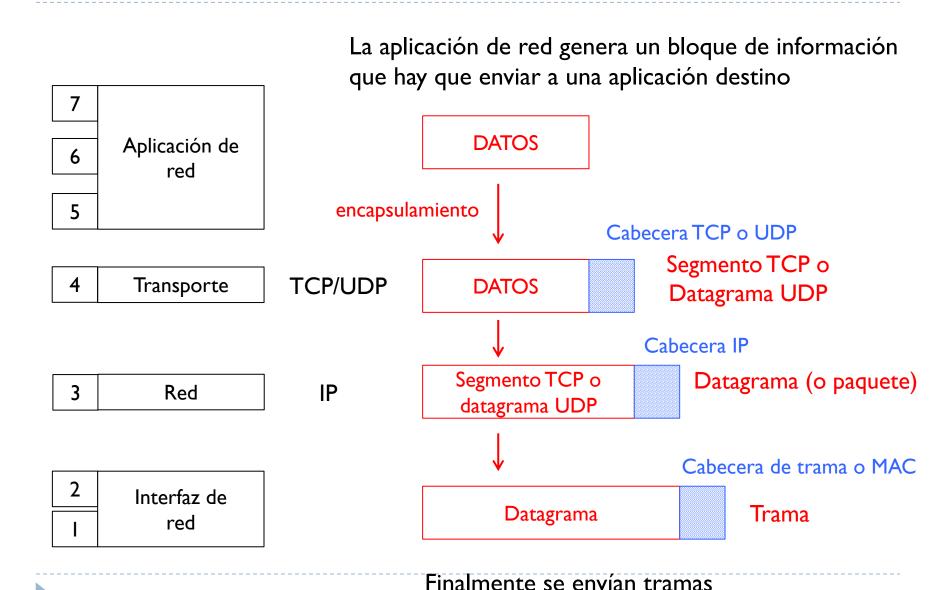
- Determina las necesidades tecnicas
- Encarga IETF de generar un nuevo estandar y aprueba el RFC final

ITU (International Telecommunication Union)

- <u>http://www.itu.org</u> → operadoras (principalmente)
- Estándar de comunicación en general (telefonía incluida)
- Generalmente trabaja en paralelo a otros organismos y crea estándares mas prácticos para usar en las redes (suele tardar mas)

Tema 1 – Organismos de estandarización

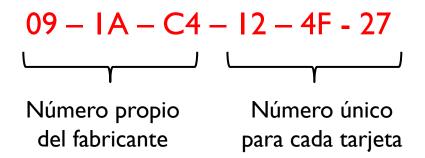
- ▶ IEEE (Institute of Electrical and Electronics Engineers)
 - http://www.ieee.org
 - Estándares de nivel 1 y 2 (LAN principalmente)
- EIA (Electronic Industries Association)
 - http://www.eia.org
 - Estándares de cableado
- ETSI (European Telecommunication Standards Institute)
 - http://www.etsi.org
 - Un poco de todo, principalmente seguridad, software, moviles


Tema 1 – Modelo TCP/IP

- El modelo ISO/OSI es un modelo genérico de referencia para cualquier estándar de red
- Al principio Internet y sus protocolos TCP/IP no era la única red existente
- Pero si ha sido la ganadora y actualmente es la más usada con diferencia
- El modelo ISO/OSI aplicado a Internet se reduce al modelo TCP/IP

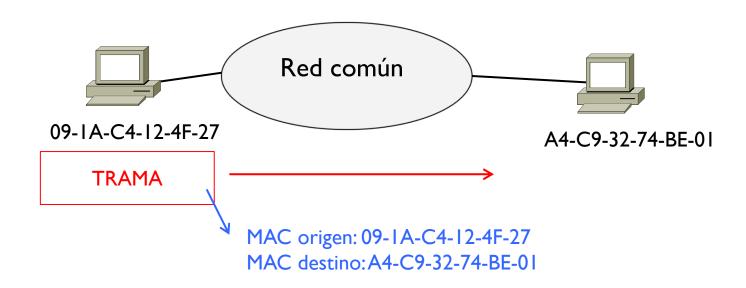
	ISO/OSI	TCP/IP	
7	Aplicación		
6	Presentación	Aplicación de red	
5	Sesión		
4	Transporte	Transporte	TCP/UDP
3	Transporte Red	Transporte Red	TCP/UDP IP
	<u> </u>	•]

Tema 1 – Modelo TCP/IP


Tema 1 – Modelo TCP/IP

- ¿qué información va en estas cabeceras?
 - Mucha, la necesaria para cumplir con las funcionalidades propia de la capa
- Destacamos
 - ▶ Cabecera de trama → dirección física o MAC
 - Una dirección MAC (@MAC) origen
 - Una dirección MAC (@MAC) destino
 - Cabecera IP → dirección lógica o IP
 - ▶ Una dirección IP (@IP) origen
 - Una dirección IP (@IP) destino
 - Cabecera TCP/UDP → puertos
 - Un puerto origen
 - Un puerto destino

Tema 1 – Dirección MAC


- Es un número de 48 bits (6 bytes)
- Identifica una determinada tarjeta de red de manera
 - en principio no hay dos tarjetas en el mundo con la misma MAC
- Es un número que pone el fabricante
- Se representa como 6 números hexadecimales de 2 dígitos

- ▶ En la cabecera de trama hay 2 @MAC
 - Una identifica la tarjeta que ha creado la trama (origen)
 - Una identifica la tarjeta que debe recibir la trama (destino)

Tema 1 – Dirección MAC


Tema 1 – Dirección IP

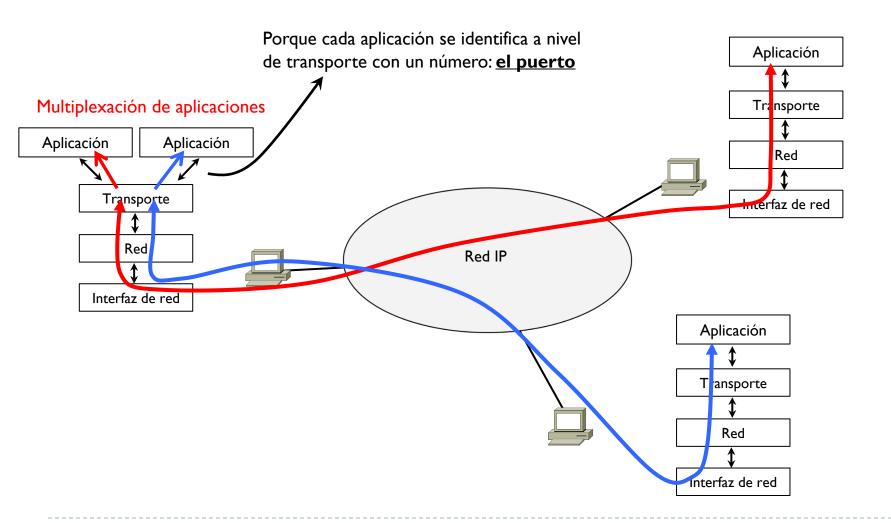
- Es un número de 32 bits (4 bytes)
- Se representa como 4 números decimales de 8 bits cada uno separados por un punto

- Es un número que asigna el administrador de red a cada interfaz de nivel 3 conectada a una red
- Identifica de manera única las redes, los hosts y los routers
- ▶ En la cabecera IP hay 2 @IP
 - Una identifica el host origen
 - Una identifica el host destino

Tema 1 – Dirección IP

Tema 1 – Puerto

- Es un número de 16 bits
- Se representa como un único número decimal


0 - 65535

- Identifica la aplicación de red
- Los primeros 1024 números (de 0 a 1023) están asignados a aplicaciones conocidas del TCP/IP

HTTP 80 SMTP 25 DHCP 67 y 68 SSH 22
 FTP 20 y 21 DNS 53 RIP 520 Telnet 23

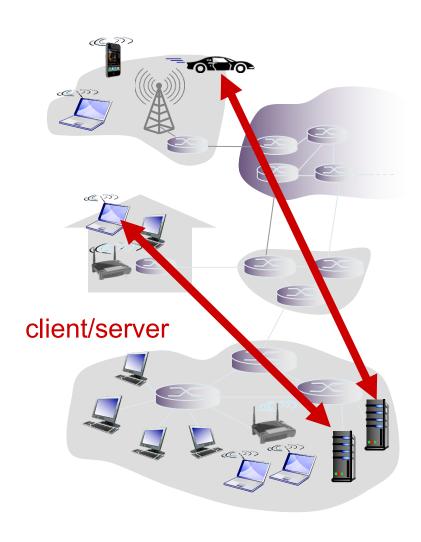
- Los otros números (de 1024 a 65535) los asigna generalmente en automático el Sistema Operativo y se conocen como números efímeros
- ▶ En la cabecera TCP/UDP hay 2 puertos
 - Uno identifica la aplicación origen
 - Uno identifica la aplicación destino

Tema 1 – Puerto

Tema 1 – Arquitecturas de comunicación

- Cliente servidor
- Peer—to—peer (P2P)

Tema 1 – Paradigma cliente-servidor


- La comunicación en Internet es principalmente entre dos extremos (o puntos)
 - Suele ser bidireccional
 - En el medio entre estos dos extremos puede haber uno o mas redes y un número cualquiera de dispositivos intermedios

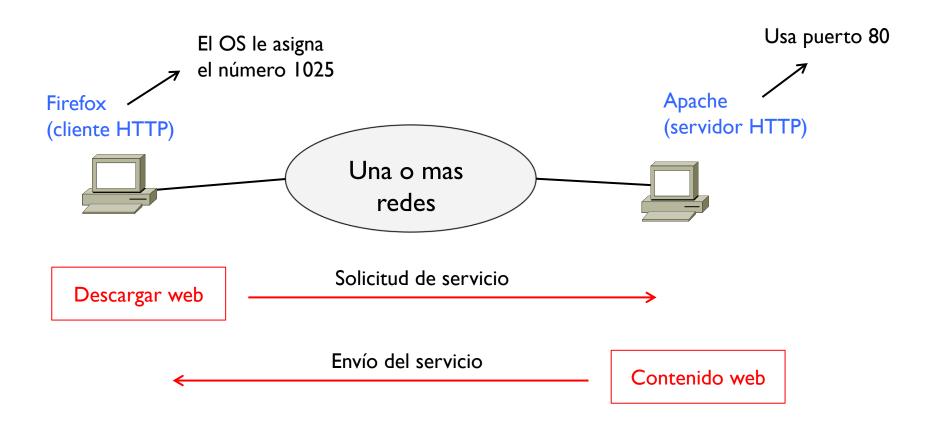
Principio

- Un extremo I necesita un determinado servicio (el cliente) y crea y transmite una solicitud a un determinado extremo 2 (el servidor)
- El servidor proporciona el servicio al cliente

Tema 1 – Paradigma cliente-servidor

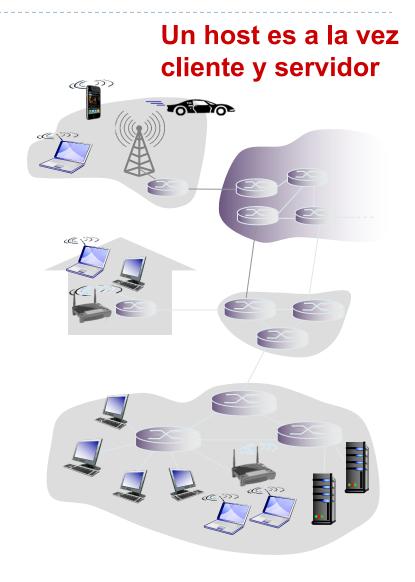
Servidor

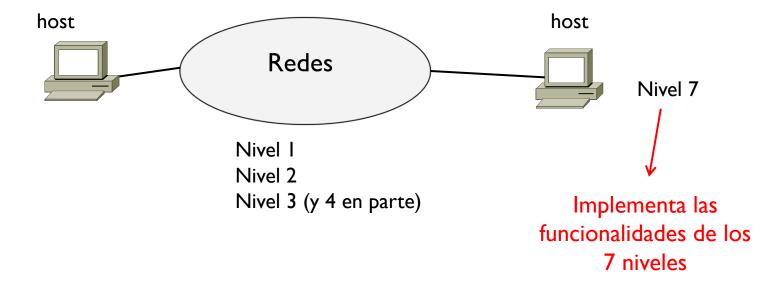
- Host siempre activo
- Una @IP estática
- Actualmente los servidores se instalan en centros de datos por escalabilidad


Clientes

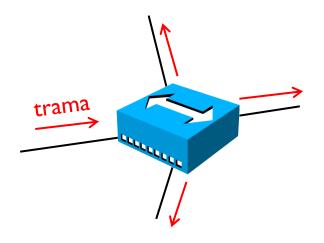
- Comunican con el servidor
- Pueden estar conectado a la red temporáneamente
- Pueden tener @IP dinámicas
- Un cliente no se comunica directamente con otro cliente

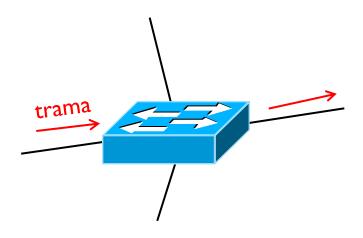
Tema 1 – Paradigma cliente-servidor


Un usuario quiere ver una página web



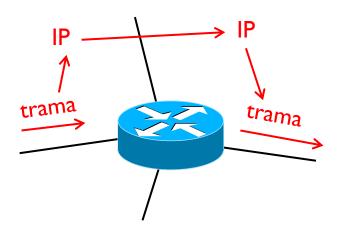
Tema 1 – Paradigma p2p


- Un servidor puede no estar siempre activo
- Cualquier pareja de hosts puede comunicar directamente
- Un host pide un servicio a otros hosts que proporcionan el servicio
 - Auto-escalabilidad nuevo hosts proporcionan más capacidad de entregar un servicio
- Los hosts pueden conectarse de forma intermitente y pueden cambiar de @IP
 - Gestión más compleja



Hub

- Dispositivo de nivel I
- Recibe una trama por una interfaz y la reenvía por todas las demás interfaces
- No modifica la trama
- Repetidor multipuerto



Switch (o conmutador)

- Dispositivo de nivel 2
- Recibe una trama y la guarda en un buffer (store&forward)
- Lee la cabecera de trama y decide la interfaz de salida según la @MAC destino
- No usa @IP

Router

- Dispositivo de nivel 3
- Recibe una trama y mira si la @MAC destino coincide con el número de su tarjeta
 - ▶ Si no lo es, descarta la trama
- Si lo es, elimina la cabecera de trama y guarda el datagrama IP que queda
- Lee la cabecera IP y decide hacía que interfaz mover el datagrama según la
 @IP destino y el conocimiento que tiene del sistema
- Encapsula el datagrama en una nueva trama y envía

Temario

- ▶ 1) Introducción
- 2) Redes IP
- 3) Protocolos UDP y TCP
- ▶ 4) Redes de área local (LAN)
- ▶ 5) Aplicaciones de red

Xarxes de Computadors

Tema 1 - Introducción