LAB 4

Vulnerabilities in web applications

Contents
4.1 Objective o o i i i i i it e e e e e e e e e 33
4.2 Start the ISO i i i ittt e e 34
4.3 EXErcCiSes. . . . ¢ v v v v v i i i e e e e e e e e e e e e e e e e e 37
4.3.1 Parameter validation L. 37
4.3.2 Session administration and authentication 43
4.3.3 Cross Site Scripting (optional) 45
434 SQLInjection L 47
4.4 References. 0 it i i it i e e 49

4.1 Objective

Vulnerabilities in web applications are responsible for most of the security viola-
tions in computer networks. Every time more often, the attacks are addressed to
applications such as Internet shopping, web forms, as well as the authentication and
access points to protected web pages and dynamic contents from linked databases
with transactions and information requests.

When we talk about web application vulnerabilities we are not talking about
operating system or http server vulnerabilities (version update, patches, etc) but
about the vulnerabilities of the software on top of them. Such vulnerabilities are
directly related to the logic, code scripting and content of the web application.

Being able to detect such vulnerabilities provides us with more security as well
as to be able to provide more control and quality to our software products.

The objective of this session is to study some of the main vulnerabilities found
in web applications, study some basic ways to perform attacks and understand the
origin of such vulnerabilities and how to be able to avoid them.

We will use the following applications for this session:

WebGoat is a J2EE application developed by OWASP (The Open Web Appli-
cation Security Project) and based on Tomcat. It is an insecure application
and it is basically its purpose. The objective is to use it as an introduction
to different attacks directed to web applications (test environment). It has
different lessons that provide us with help and information to understand and
to be able to overcome them.

34 Lab 4. Vulnerabilities in web applications

WebScarab is a framework to analyze web applications developed by OWASP. It
uses http and https and it can be used as a proxy to study a web page requests
and responses, review and modify them before they get to the client or the
server.

Both applications can be found on a LiveCD named OWASP Live CD Education
Project (LabRat), that we are going to use. This Live CD can be downloaded from
http://appseclive.org/content /downloads. However, for this lab, we will download
an image prepared for this session.

The vulnerabilities that we are going to see are:

Hidden field authentication: how to obtain additional information from web ap-
plications and modify the client’s generated requests or server responses to be
able to perform the attack.

Weak session identification: we will see the dangers of a weak authentication,
and in this case, how to impersonate another user by means of a session cookie.

Cross-Site Scripting (XSS): is an attack based in the vulnerabilities exploit of
the embedded HTML validation. It takes advantage on the lack of filtering
mechanisms of the input fields, allowing the data input and transfer without
any validation, being able to generate malicious command sequences or scripts.

SQL Injection: it is a vulnerability found at the input data validation of a
database associated to a web application. The origin is the incorrect filtering
of variables used in the application code that perform SQL sentences.

4.2 Start the ISO

Start the computer with MS windows. Download the OWASP ISO from the web-
page: https://goo.gl/7DoUn4. Click on the OWASP image and import in the
Virtual Box. Turn on the virtual machine and open the OWASP WTE image.

Once the OWASP WTE has started, you must follow the steps:

1. Screen resolution: The default resolution is quite low; increase it in System
-> Preferences -> Monitors

2. Start the WebScarab application: When starting the graphic interface go
to the OWASP -> Proxies -> WebScarab and click to see the following screen:

http://appseclive.org/downloads
https://goo.gl/7DoUn4

4.2. Start the ISO

35

OWASP - Parallels Desktop
5]

43 Applications Places System

1y @) ThuFeb 16, 4:02AM @ custom ()

WebScarab

File View Tools Help i

" XSS/CRLF | SessionID Analysis | Scripted | Fragments | Fuzzer | Compare | Search | g
Summary | Messages [proxy | Manual Request | spider | Extensions

[[] Tree Selection filters conversation list
url | _Methods | Status |Possible I...| Injection | Set-Cookie| Comments| Scripts |

| Method Host. Path |Parameters| Status | Origin | Tag | Size |Possil

WebScarab

@) ~| Parallels Tools no esta instalado. En el mend Miquina Virtual, seleccione Instalar Parallels Tools. B{§OQFRO@a X 4

3. Start WebGoat application:

OWASP - Parallels Desktop
&)

43 Applications Places System 1y @) ThuFeb 16, 4:35AM @ custom ()

(> custom@custom: fopt/owasp/webgoat
File Edit View Search Terminal Help

Install Custom Live |custom@custom:/opt/owasp/webgoat$ sudo ./webgoat.sh start8ese
Using CATALINA BAS| ./tomcat
Using CATALINA HOME: /tomcat
Using CATALINA TMPDIR: ./tomcat/temp
Using JRE_HOM| /usr/1ib/jvm/java-6-sun-1.6.0.22/bin,
Using CLASSPATH: ./tomcat/bin/bootstrap.jar

Open http://127.0.0.1:8080/WebGoat/atta

Username: guest

Password: guest

Or try http://guest:guest@127.0.0.1:8080/WebGoat/attack

Feb 16, 2012 4:33:31 AM org.apache.coyote.httpll.Httpl1lBaseProtocol start

INFO: Starting Coyote HTTP/1.1 on http-127.0.6.1-8080

Feb 16, 2012 3:31 AM org.apache. jk.common.ChannelSocket init

INFO: JK: ajpl3 listening on /6.6.0.0:8009

Feb 16, 2012 4:33:31 AM org.apache.jk.server.JkMain start

INFO: running ID=0 time=0/16 config=null

Feb 16, 2012 4:33:31 AM org.apache.catalina.storeconfig.StoreLoader load

INFO: Find registry server-registry.xml at classpath resource

Feb 16, 2012 4:33:31 AM org.apache.catalina.startup.Catalina start

INFO: Server startup in 1117 ms

- WebG Thu Feb 16 04:34:03 CST 2012 | 127.6.0.1:127.0.6.1 | org.owasp.webgoa

t.lessons.HowToWork | []

Thu Feb 16 04:34:03 CST 2012 | 127.0.0.1:127.0.6.1 | org.owasp.webgoat.lessons.H
jork | [1]

x

2 [websScarab] =] custom@custom: /op...

Parallels Tools no esté instalado. En el meni Maquina Virtual, seleccione Instalar Parallels Tools. BIOFRO@a |

e Open a shell
e Change to the directory where the WebGoat application is installed

cd /opt/owasp/webgoat

36 Lab 4. Vulnerabilities in web applications

e Start the application on port 8080

#sudo ./webgoat.sh start8080 &

e Watch the messages appearing while the application starts. When the
following message appears the application will be running

INFO: Server startup in 4350 ms

4. Web browser configuration: Open the web browser and configure it to
use a local proxy, in our case WebScarab, using port 8008 by default. Go to
'Edit -> Preferences -> Advanced -> Network -> Settings...” (may change
depending on the Firefox version)

000 OWASP - Parallels Desktop
3 Applications Places System %) 1) ThuFeb 16, 4:39AM @ custom ()

File Edit View History Bookmarks Tools Help

[Most Visited v [@] Gel

Connection Settings

[®) Ubuntu Start Page
Configure Proxies to Access the Internet

Genera No proxy
Auto-detect proxy settings for this network
Use system proxy settings

Cor Sezs
@ Manual proxy configuration: =]

Conn

OFflir HTTP Proxy: | 127.0.0.1 Port: 8008 2
Use Use this proxy server for all protocols Now|
&1 SSL Proxy: Port: 05 S
The 2
ETP Proxy: Port: 0
Gopher Proxy: Port: 0
h SOCKS Host: Port: 0
SOCKSv4 ® SOCKS V5
No Proxy for:
Example: .mozilla.org, .net.nz, 192.168.1.0/24
Automatic proxy configuration URL:
@Help | Qcancel | JoK. |
@Help | %close |

Done

3 [websScarab]] custom@custom: fop... &) UbuntuStartPage-M...) Firefox Preferences _
@) ~| Parallels Tools no estd instalado. En el meni Maquina Virtual, seleccione Instalar Parallels Tools. B{§OFRoaa [x| W

Configure manually the proxy option as shown in the figure.

Warning! Observe that the field No Proxy for doesn’t have neither “127.0.0.1”
nor “localhost”.

Disable Firefox automatic checks for updates in "Edit -> Preferences -> Ad-
vanced -> Update’.

At the browser address bar type http://127.0.0.1:8080/webgoat/attack
Remember: user: guest password: guest

Click on the ’Start WebGoat’ button.

4.3. Exercises 37

4.3 Exercises

4.3.1 Parameter validation

We will see the danger of not validating input parameters on a Web application or
doing a poor or incorrect validation. On ’Parameters tampering’ we will find three
exercises:

4.3.1.1 Hidden fields

Access to WebGoat’s lesson ’Exploit Hidden Fields’ in "Parameter Tampering’. Its
goal is to buy from a web page for a lower price.

Observing the web page we can see that the field 'Price’ can’t be modified. Try
several times "Update chart’ or "Purchase’ or observing the code clicking ’Show Java’
to modify the product’s price. Have you found anything?

* | How to Exploit Hidden Fields - Firefox - 0 X%
File Edit View Go Bookmarks Tools Help

G- - &) &) [D ntp://127.0.0.1WebGoat/attack?menu=110 ~| ®co [EL

Getting Started b Latest Headlines

D

How to Exploit Hidden Fields

OWASP WebGoat V5

Admin Functions
General

Code Quality
Unvalidated Parameters

Restart this Lesson
Try to purchase the HDTV for less than the purchase price, if you have not done so already.

How to Exploit Hidden Fields

How to Exploit Unchecked Shopping Cart

Email
How to Bypass Cliert Side Shopping Cart items -- To Buy | price: Quantity: Total
avaScript Validation
Broken Access Control 56 inch HDTV (model KTV-551) 2999.99 Il $2999.99
B Authentication and 13
Management
c ite Scripting (XSS) The total charged to your credit card: $2999.99 Update Cart Purchase
Buffer Overflows
Injection Flaws
Improper Error Handling m
Insecure Storage OWASP Foundation | Project WebGoat

Denial of Service
Insecure Configuration
Management

Web Services L=

Read 127.0.0.1

Let’s now watch the request sent to the server when we try to buy. Follow the
steps:

e Go to WebScarab and tick 'Intercept Requests’ inside "Proxy->Manual Edit’
tab:

38 Lab 4. Vulnerabilities in web applications

" WebScarab _=]
File Yiew Tools Help

XSS/CRLF | SessionID Analysis | Scripted | Fragments | Fuzzer | Compare | Search |
Summary | Messages | Proxy | Manual Request | WebServices | Spider | Extensions |

Listeners | Manual Edit | Bean Shell | Miscellaneous |

Intercept requests :
Methods
GET :
POST Exclude paths matching :

HEAD [.\.(gifl ipglpnalcss|jslical swilaxd.")$ |
PUT
DELETE
TRACE
PROPFIND
OPTIONS

Case Sensitive Regular Expressions 2 [_|
Include Paths matching : |3

" |

Intercept responses: [|
Only MIME-Types matching :

e Once the requests reception has been activated, go back to WebGoat and try
to buy clicking on ’Purchase’.

" Edit Request —[=]

Intercept requests : Intercept responses : []

Parsed | Raw |

Method URL Version
POST | |nitp:j/127.0.0.1:80 WebGoat/attackemenu =110 | [ATTR/L1]
Headler Value .
Host 127.0.0.1 - |
User-Agent [Mozilla/5.... I Delete
Wacrent ltext fxml a hd
| e T RO
URLEncoded | Text | Hex |
Variable Yalue
QTY 1 Insert
SUBMIT Purchase
Price 00 Delete

Parsed | Raw |
Version Status Message

Header Value
e
Hex |
Position | 0] 1]2]3[4[5]6]7]8[9]A[B[CID]E[F] String
I | Accept changes | Cancel changes | Abort request I | Cancel ALL intercepts

e You will then see a new WebScarab window popping up with the intercepted
request. If we take a look at tab "'URLEncoded” we’ll find variables (QTY,
SUBMIT, Price). One of the variables refers to the purchase price, try to
modify the price at column ’Value’, disable the requests interception (clicking
again on 'Intercept Requests’) and click on ’Accept Changes’.

We have been able to modify the purchasing price.

4.3. Exercises

39

* How to Exploit Hidden Fields - Firefox
File Edit View Go Bookmarks Tools Help

X

@-o- & @ [0 http://127.0.0.1/WebGoat/attack?menu=11¢-

- eco [@

Getting Started B Latest Headlines

OWASP WebGoat V5

Admin Functions
General

Code Quality
Unvalidated Parameters

% onto Exploit Hidden
Fields

How to Exploit Unchecked
Email

How to Bypass Client Side
avaScript Validation
Broken Access Control
Broken Authentication and
Session Management
Cross-Site Scripting (XSS)
Buffer Overflows
Injection Flaws
Improper Error Handling
Insecure Storage
Denial of Service
Insecure Configuration

Logout 0

How to Exploit Hidden Fields

Restart this Lesson

Try to purchase the HDTV for less than the purchase price, if you have not done so already.
* Congratulations. You have successfully completed this lesson.

Your total price is: $100.0

This amount will be charged to your credit card immediately.

OWASP Foundation | Project Wet

D

Read 127.0.0.1

4.3.1.2

e-mail not validated

Go to WebGoat lesson ’Exploit unchecked mail’ in ’Parameter Tampering’. Now
the goal is to be able to change the e-mail address where the comments typed at
the web page are sent. Enter some comments and see the code by clicking on ’Show

Java’ to be able to modify the e-mail address. Have you found anything?

Type a malicious script like:

<script>alert ("XSS")</script>

into the comments field and send. Observe that you are able to add your own

script and execute whatever you want.

Now, let’s change the e-mail address field. This can be accomplished by inter-

cepting the request with webscarab and changing the hidden field "to" from we-
bgoat.admin@owasp.org to alumne@fib.upc.edu (don’t worry, no email is actually

sent during this test).

40 Lab 4. Vulnerabilities in web applications

000 i OWASP - Parallels Desktop =]

Intercept requests : [/] Intercept responses: []

(Parsed | Raw | 34 @
Method URL Version

POST | [http://127.0.0.1:8080/webgoat/attack?Screen=84&menu=1700 | [rP1]| Transform -

Header | Value This Site| | NotNow | %
Host 127.0.0.1... —_—
User-Agent [Mozillals.... 2
Accept _[text/htm,...
[Accept-L.. [en-us.en...
Accept-E... |gzip.deflate Insert ‘
[Accept-C... [150-8859-.. Delete | :
Keep-Alive [115 3
Proxy-Co... |keep-alive .
Referer |http:/12 N ¥
Cookie ||SESSIONL...
Authoriza... Basic 23

URLEncoded | Text | Hex

Variable Value

gld GMail id

gPass password

subject Comment for WebGoat
to alumne@fib.upc.edu
msg. <script>alert("Xs5")</script> | Insert j

SUBMIT Send! [

| Delete |
Accept changes | Cancel changes | Abortrequest | [cancel ALL intercepts

You sent the following message to: webgoat.admin@owasp.org

Return.Path: cwehanat@awacn nms.

Waiting for 127.0.0.1...

WebScarab [custom@cu... %) ExploitUnch... ¥) Mozilla Firef.. ?) Mozilla Firef... Edit Request | t_
() ~| Parallels Tools no estd instalado. En el men(Maquina Virtual, seleccione Instalar Parallels Tools. B{QFRbeaa [x| MW

4.3.1.3 Avoid validations on the client side

Go to WebGoat lesson 'Bypass Client Side JavaScript Validation’ in "Parameter
Tampering’. The goal is to avoid validation implemented on the client side of the
application.

This web page sends seven values to the web server that need to match regular
expressions validated locally. Try introducing correct and incorrect values on every
field and send them clicking on 'Submit’ or observing the code clicking on ’Show
Java’ to be able to find the code implementing the fields validation. Have you found
anything?

What would happen if we sent incorrect values in all the fields? For instance a
dash (-)

4.3. Exercises

41

Restart this Lesso

This website performs both client and server side validation. For this exercise, your job is to break the client sid:
validation and send the website input that it wasn't expecting. You must break all 7 validators at the

same time.

Fieldl: exactly three lowercase characters (~[a-z]{3}$)

| http://127.0.0.

Field2: exactly th

/1\ JavaScript found form errors
~ badfieldl
Field3: letters, ny bad field2
- bad field3
bad field4
F-ie|d4: enumerat]| bad fields
bad fieldé
bad field7

FieldS: simple zip|

Field6: zip with optTOTTaT T Tt T T PO a T TS

Submit |

Field7: US phone number with or without dashes (~[2-9)\d{2}-Ad{3}-"\d{4}$)

Data is being validated at the client side and we can’t send it to the server.
Looking at the code you can find the section implementing the validation:

if (!patternl.matcher (paraml) .matches ()){
err++;

msg += "
Server side validation violation:

You succeeded for Fieldl.";
}
if (!pattern2.matcher (param2).matches ()){
err++;

msg += "
Server side validation violation:

Field2.";
}

if (err > 0){
s.setMessage (msg) ;

}

You succeeded for

This code is downloaded when requesting the web page. Let’s try to skip the

validation:

We need to modify WebScarab configuration to be able to intercept server’s
responses. On tab ’Proxy’, check ’Intercept Responses’ an verify that ’Intercept

Requests’ is disabled.

Now reload the browser’s page to issue a new request.

You will see a new

WebScarab window with the intercepted response. If we click on ’Raw’ tab from
the lower half window we’ll be able to see the server’s response and there we will
find the code to validate the fields that we want to avoid.

42 Lab 4. Vulnerabilities in web applications

" Edit Response — 5%
Intercept requests: [| Intercept responses:
Parsed | Raw |
Method URL Yersion
GET http:/f127.0.0.1:80/WebGoat/attack?Screen=37&menu=110 HTTP/1.1
Header Value
Host 127.0.0.1 -

User-Agent Mozilla/s....
T

-

Position |0[1[2[3[4[s5]6[7[8[a]alB[C/D[E[F] String

v

Parsed | Raw |

regex? = /A2-SN\d(Z}-AAdZ AN

unction validate() {

msg="Javascript found form errors’; err=0;

if (Iregex1.test{document.form.field1.value)) {err+=1;
if (Iregex2.test{document. form.field2. value)) {err+ =
if (regex3.test{document.form.field3.value)) {err+ =
if (Iregex4.test{document.form.field4.value)) {err+ =
if (IregexS. test{document. form.fieldS . value)) {err+=1; msg+="yn bad field5";}
if (Iregex6.test{document. form.fieldé.value)) {err+=1; msg+="\n bad field6";}
if (Iregex7 . test{document.form.field7 value)) {err+=1; msg+="\n bad field?"}
if (err > 0) alert(msg)]

else document.form. submit(;

msg+="\n bad field1’}
msg+="\n bad field2';}
msg+="\n bad field3"’}
msg+="\n bad field4"}

i
< /SCRIPT >
iy,

<« i I

[T

[«]

I Accept changes I Cancel changes l Abort request ‘ | Cancel ALL intercepts l

Edit the code erasing the validation code: lines between “msg="JavaScript found

form errors” and “(if (err>0 alert(msg); else”.

Uncheck ’Intercept responses’ , click on "Accept Changes’, go back to the web

page and click ’Submit’ to send incorrect data to the server.

We have been able to avoid the client’s validation and to send incorrect infor-

mation to the server.

Restart this Lesso

This website performs both client and server side validation. For this exercise, your job is to break the client sid:
validation and send the website input that it wasn't expecting. You must break all 7 validators at the

same time.

*
Server side validation violation: You succeeded for Fieldl.
Server side validation violation: You succeeded for Field2.
Server side validation violation: You succeeded for Field3.
Server side validation violation: You succeeded for Field4.
Server side validation violation: You succeeded for Field5.
Server side validation violation: You succeeded for Field6.
Server side validation violation: You succeeded for Field7.
* Congratulations. You have successfully completed this lesson.

Fieldl: exactly three lowercase characters (~[a-z]{3}$) [N

Field2: exactly three digits (~[0-9]{3} $)

Field3: letters, numbers, and space only (~[a-zA-Z0-9]*$)

Field4: enumeration of numbers (~(one|twol|three|four| five|six| seven|eight|nine) $)

FieldS: simple zip code (~\d{5}%)

Field6: zip with optional dash four (™“\d{5}(-\d{4})7%)

4.3. Exercises 43

4.3.1.4 Fail Open Authentication Scheme

Go to WebGoat lesson 'Fail Open Authentication Scheme’ in 'Improper Error Han-
dling’. Try solving the lesson generating an uncaught error in the server.

Due to an error handling problem in the authentication mechanism, itis possible to authenticate
as the 'webgoat' user without entering a password. Try to login as the webgoat user without
specifying a password.

Sign In
Please sign in to your account. See the OWASP admin if you do not have
an account.

*¥Required Fields

*User Name: |webgoat1
*Password: l
Loginkj
OWASP Foundation | Project so0at

4.3.2 Session administration and authentication
4.3.2.1 Authentication using cookies

We’'ll see now how applications use cookies to maintain session information and
how that information can be used to establish a session for a different user without
having its credentials.

Go to WebGoat lesson ’Spoof an Authentication Cookie’ in "Session Management
Flaws’. The goal is to be able to establish a session as user ’Alice’ without having
her credentials.

Try authenticating as ’webgoat/webgoat’ and ’aspect/aspect’ reloading the
screen to observe how the web page uses the cookie to validate and maintain the
session. Watch the code clicking on 'Show Java’ to be able to establish a session as
user ’Alice’. Have you found anything?

Let’s take a look at the mechanism used to authenticate using the cookie:

e Log in as 'webgoat’.

e Check the WebScarab ’'Intercept Request’ box and click 'Refresh’. You will
see a new window with the request; observe the cookie’s value.

(Parsed | Raw |

Method URL Version

[GET | |http://127.0.0.1:80/WehGoat/attack? [HTTP/1.1
Header Value

Host 127.0.0.1

User-Agent Mozillaj5.0 (£11; U; Linux i686; en-US; nv.1.8.0.7) Gecko/20060830 Firefox/1.5.0.7...

Accept text/xml,application/xml, application/xhtml+ xml,text/html; g = 0.9, text/plain; g =0.8,im...

Accept-Language |en-us,en;q=0.5
Accept-Encoding gzip, deflate

Accept-Charset 150-8859-1,utf-8,0=0.7,",0=0.7 Insert
Keep-Alive : 300 Delete
Proxy-Connection |keep-alive

Referer http: f/127.0.0.1/WebGoat/attack?

Cookie thCookie=65432ubphcf; JSESSIONID=1530C35DBE2616D908ESE7 IDSE1ID3B40

Authorization Basic Z3VIc306Z3VIc3Q=

L3

44 Lab 4. Vulnerabilities in web applications

e Uncheck ’Intercept Requests’ and click ’Accept Changes’.

e Do the same for user ’aspect’ observing the value of the cookie; compare it
with the one for user 'webgoat’.

e Repeat the same process several times, observing the value of the cookie for

each user.
Parsed | Raw |
Method URL Version
[GET | [http://127.0.0. 1:80/ WehGoat/attack? | [HTTP/1.1]
Header | Walue
Host 127.0.0.1
User-Agent Mozillaf5.0 ({11; U, Linux i686; en-US; ne1.8.0.7) Gecko/20060830 Firefox/1.5.0.7...
Accept text/xml, application;xml, application xhtml+xml,text/html, g = 0.9, text/plain;q=0.8,im...

Accept-Language |en-us,en;q=0.5
Accept-Encoding |gzip, deflate

Accept-Charset 1S0-8859-1,utf-8,0=0.7,",0=0.7 Insert
Keep-Alive 300) Delete
Proxy-Connection |keep-alive

Referer http:/f127.0.0.1/WebGoat/attack?

Cookie AuthCookie=65432udfgth; JSESSIONID=1530C35DBE2616D908ESE7 1DSE1D3B40

| Authorization Basic Z3VIc3Q62Z3VIc3Q=

The value of variable ’AuthCookie’ for each user is always the same. Therefore
we can think that if we find the logic that generates that value we can try to modify
the cookie to simulate a session for another user.

Let’s study each value:

User AuthCookie
webgoat | 65432ubphcfx
aspect 65432udfqtb
Alice 6543277777

We can see that variable ’AuthCookie’ always begins with '65432’, we’ll then
concentrate on the variable part.

It looks like the number of characters of the username is directly related to the
generated code

e webgoat 7 characters -> upbhcfx 7 characters
e aspect 6 characters -> udfqtb 6 characters
e alice 5 characters ... we may then think that the code will have 5 characters

Let’s now try finding some relationship amongst the characters:

The code generated for both users begins with 'u’ but the username doesn’t
begin with the same character. But we see that both end in ’t’. Reversing the
order:

User AuthCookie
taogbew ubphcfx
tcepsa udfqtb

4.3. Exercises 45

Now, we only need to watch a bit longer the characters to discover that, each
character corresponds to one of the characters of the username in the ’AuthCookie’
alphabet. That’s a variant of the Caesar enciphering, classic and very basic method
where a character is replaced by another one, with a bijective correspondence.
t->u, a->b, 0->p, g->h, b->c, e->f, w->x
t->u, c->d, e->f, p->q, s->t, a->b

Therefore to generate the code for user ’alice’:

User AuthCookie
webgoat | 65432ubphcfx
aspect 65432udfqtb
alice 65432fdjmb

Now, let’s send the server the modified value of ’AuthCookie’: start a session
with for user 'webgoat’ or 'aspect’, check WebScarab’s "Intercept Requests’ and click
"Refresh’.

On the new WebScarab window containing the request, modify the value for
"AuthCookie’ using the one we have calculated, uncheck ’Intercept Requests’ and
click on ’Accept Changes’.

* Congratulations. You have success{ully completed this lesson.

Welcome, alice

You have been authenticated with COOKIE

You can now see a page that is greeting user ’alice’.

4.3.3 Cross Site Scripting (optional)

We will see now how to take advantage on a form vulnerability using what we have
already learnt.

Go to WebGoat lesson 'LAB: Cross Site Scripting (XSS)’ in ’Cross-Site Scripting
(XSS)’. The goal of that lesson is that the application serves a script developed by
us or any other user.

Try authenticating against the web page using different users (the password is
the same as the username) observing what features are available and looking for a
way to execute our own script when a user logs in. Any idea?

Basically this is a human resources application where every user can access to
his related information. Administrative users can query and update other users.

Authenticate as an administrative user i.e. ’John Wayne (admin)’ password
‘john’.

46 Lab 4. Vulnerabilities in web applications

OWASP WebGoat V5

Admin Functions
General
Code Quality Stage 1: Execute a Stored Cross Site Scripting (XSS) attack.

Unvalidated Parameters : ; =d Cro: SS) .)
Broken Accate Contral For this exercise, your mission is to cause the application to serve a script of your making to some other user.

Broken Authentication and

Session Management

Cross-Site Scripting (XSS) &
448 cross it Scrpting Goat Hills Financial
xss) 5 S

How to Perform Stored JA Human Resources

Cross Site Scripting (XSS) =

Forced Browsing [MM S]

How to Perform Reflected

Cross Site Scripting (XSS)
Attacks
HTTPOnly Test Please Login

o eriorm Cross Ste [10hn Wayne (admin) ~|

How to Perform Cross Site Password [#++4]

Request Forgery (CSRF) .
Buffer Overflows Login

Injection Flaws
Improper Error Handling
Insecure Storage

Denial of Service
Insecure Configuration \
Management
Web Services
AJAX Security
New Lessons
Challenge

Restart this Lesson

Select an employee from the list and click on ’ViewProfile’.

We will now modify one of the fields of that user adding a script that will be
executed when the user logs in to check his data.

Add to the field ’Street’:

<script>alert ("Stolen session" + document.cookie)</script>

Click on "UpdateProfile’; a pop-up alert should appear since the form field is
processed without validation. Click on "Logout’.

“ Goat Hills Financial

L1
Jﬁ Human Resources

T =+ Welcome Back |ohn > ‘l\

First Name: lLarry Last Name: IStooge

Street: I1ent.cookie)</script> City/State: lNew York, NY

Phone: [443-689-0192 Start Date: [01012000

SSN: |386-09-5451 Salary: [55000

CredtCard [2578546069853547 ~ Credtcad [5g00

Comments: IDoes not work well wi Manager: l Larry Stooge =
Constantly harrassing

i A A ;. [0T0106

ViewProfile | Updategrofile [Logout |

()

4.3. Exercises

47

To check whether our scripts executes also for the target user, authenticate as
the modified user, select its name in the left form and then click on ’View Profile’.

7~ ™
Larry Stooge (employee) ~|
Password et]
Login |
. -
Logout
AB O e g
OWASP WebGoat V5 < ts [> Sho
Admin Functi Uit = b tart this Les:
General ,r"i Sessio Robada :JSESSIONID=5CEC7CE4933FCDFC25DDC7A8C1ES9A0D
! ut field you jus
Code Quality k
Unvalidated H OK
Broken Acc
1 Human Resources
E‘g‘;k:;‘h“;:t;:gg'e"f‘z‘t‘ and RASTAGE 4 FIXES Look for the <-- STAGE 4 - FIX —> =
S el Wal Back.
Cross-Site Scripting (XSS)
First Name: Larry Last Name: Stooge
Buffer Overflows Street: 9175 Guilford Rd>

Injection Flaws
Improper Error Handling

Incariira Gtarana

See that the application has served that script to another user, therefore we have

achieved our goal.

4.3.4 SQL Injection

We are going to study how to insert SQL sentences inside of a previously written

query in order to manipulate the correct procedures of a given application.

In ’Injection Flaws’, go to WebGoat lesson ’String SQL Injection’ (not 'LAB:
SQL Injection’). Its goal is to obtain a listing of the credit cards stored in a database.

Type ’Smith’ as a parameter and try other values. Observe the results and study
how the SQL sentence providing the listing is modified.

See that the query is waiting for a value to be entered and then used.

48 Lab 4. Vulnerabilities in web applications

Logout @

How to Perform String SQL Injection

OWASP WebGoat V5

éd;r:g;;unctnons Restart this Lesson
Code Quality SQL injection attacks represent a serious threat to any database-driven site. The methods

Unvalidated Parameters
Broken Access Control
Broken Authentication and
Session Management
Cross-Site Scripting (XSS)

behind an attack are easy to learn and the damage caused can range from considerable to
complete system compromise. Despite these risks an incredible number of systems on the
internet are susceptible to this form of attack.

Not only is it a threat easily instigated, it is also a threat that, with a little common-sense and
forethought, can be almost totally prevented. This lesson will show the student several

Buffer Overflows examples of SQL injection.

Injection Flaws

v f Itis always good practice to sanitize all input data, especially data that will used in 0S command,
How to Perform scripts, and database queiries.

Command Injection

How to Perform Blind SQL General Goal(s):

Injection

How to Perform N . The form below allows a user to view their credit card numbers. Try to inject an SQL string that
ow to Perform Numeric . " e o =

SOL Iniection results in all the credit card numbers being displayed. Try the user name of 'Smith'.

How to Perform Log
Spoofing Enter your last name: ;our Name Go!

How to Perform XPATH
Injection SELECT * FROM user_data WHERE last_name = 'Your Name'

How to Perform String SQL No results matched. Try Again. 3
Injection

LAB: SQL Injection OWASP Foundation | Project WebGoat

How to Use Database
Backdoors

General Goal(s):

The form below allows a user to view their credit card numbers. Try to inject an SQL string that
results in all the credit card numbers being displayed. Try the user name of 'Smith'.

Enter your last name: |Smith Go! |

SELECT * FROM user_data WHERE last_name = 'Smith’

userid|[first_name [last_name|[cc_number cc_type [cookie [login_count
102 Jlohn Smith 2435600002222 |MC 0

102 John Smith 4352209902222 |[AMEX 0

What if we type two quotes without any value?

General Goal(s):

The form below allows a user to view their credit card numbers. Try to inject an SQL string that
results in all the credit card numbers being displayed. Try the user name of 'Smith'.

Enter your last name: |" Go! |

SELECT * FROM user_data WHERE last_name = '''"'

No results matched. Try Again.

h

OWASP Foundation | Project V

The SQL sequence is correct and returns no value. What if we type just one
quote?

General Goal(s):

The form below allows a user to view their credit card numbers. Try to inject an SQL string that
results in all the credit card numbers being displayed. Try the user name of 'Smith'.

Enter your last name: |' Go!

SELECT * FROM user_data WHERE last_name = '''

SELECT * FROM user_data WHERE last_name ="' Don't understand SQL after: "WHERE"
Expected: "(" found: "="

4.4. References 49

Now the SQL syntax is not correct: it requires a quote at the beginning of a
string and another one at the end. We must then find a correct SQL sentence that is
always true Enter this text for 'last _name’ and execute the query clicking on 'Go!’

FIB’ or ’1°’=’1

We are closing the first quote with any value and then add an expression that
always is true ("1’="1"). We need to remember that a quote is added at the end.
The Boolean OR, operator will make the trick returning all the values of the table.

General Goal(s):

The form below allows a user to view their credit card numbers. Try to inject an SQL string that
results in all the credit card numbers being displayed. Try the user name of 'Smith'.

* Congratulations. You have successfully completed this lesson.
* Bet you can't do it again! This lesson has detected your successfull attack and
has now switch to a defensive mode. Try again to attack a parameterized query.

Enter your last name: |FIB' OR '1'="1 Go!

SELECT * FROM user_data WHERE last_name = 'FIB' OR 'l1'='1l"

userid [first_name [last_name |cc_number cc_type [cookie [login_count
101 ljoe Snow 987654321 VISA 0
101 joe Snow 2234200065411 |[MC 0
102 lohn Smith 2435600002222 |MC 0
102 lohn Smith 4352209902222 (AMEX 0
103 Jane Plane 123456789 MC 0
103 Jane Plane 333498703333 |AMEX 0
10312 |Jolly Hershey 176896789 MC 0
10312 ||Jolly Hershey 333300003333 |AMEX 0
10323 ||Grumpy White 673834489 MC 0
10323 ||Grumpy White 33413003333 |AMEX 0
15603 |Peter Sand 123609789 MC 0
15603 |Peter Sand 338893453333 [AMEX 0
15613 |[loesph Something |33843453533 ||AMEX 0

We have finally achieved to list all the values of the customer’s credit cards
stored in the database.

4.4 References

e OWASP Project , http://www.owasp.org

e OWASP Project at Sourceforge, http://sourceforge.net/projects/owasp

e Web Application Security Consortium (WASC), http://www.webappsec.org
e Common Vulnerabilities and Exposures (CVE), http://www.cve.mitre.org

— http://www.fags.org/rfcs /rfc2660.html
— http://www.fags.org/rfcs /rfc2616.html
— http://www.fags.org/rfcs /rfc1945.html

50

Lab 4. Vulnerabilities in web applications

e Secure Coding: Principles & Practices, http://www.securecoding.org/

