
Lab 4

Vulnerabilities in web applications

Contents
4.1 Objective . 33
4.2 Start the ISO . 34
4.3 Exercises . 37

4.3.1 Parameter validation . 37
4.3.2 Session administration and authentication 43
4.3.3 Cross Site Scripting (optional) 45
4.3.4 SQL Injection . 47

4.4 References . 49

4.1 Objective

Vulnerabilities in web applications are responsible for most of the security viola-
tions in computer networks. Every time more often, the attacks are addressed to
applications such as Internet shopping, web forms, as well as the authentication and
access points to protected web pages and dynamic contents from linked databases
with transactions and information requests.

When we talk about web application vulnerabilities we are not talking about
operating system or http server vulnerabilities (version update, patches, etc) but
about the vulnerabilities of the software on top of them. Such vulnerabilities are
directly related to the logic, code scripting and content of the web application.

Being able to detect such vulnerabilities provides us with more security as well
as to be able to provide more control and quality to our software products.

The objective of this session is to study some of the main vulnerabilities found
in web applications, study some basic ways to perform attacks and understand the
origin of such vulnerabilities and how to be able to avoid them.

We will use the following applications for this session:

WebGoat is a J2EE application developed by OWASP (The Open Web Appli-
cation Security Project) and based on Tomcat. It is an insecure application
and it is basically its purpose. The objective is to use it as an introduction
to different attacks directed to web applications (test environment). It has
different lessons that provide us with help and information to understand and
to be able to overcome them.

34 Lab 4. Vulnerabilities in web applications

WebScarab is a framework to analyze web applications developed by OWASP. It
uses http and https and it can be used as a proxy to study a web page requests
and responses, review and modify them before they get to the client or the
server.

Both applications can be found on a LiveCD named OWASP Live CD Education
Project (LabRat), that we are going to use. This Live CD can be downloaded from
http://appseclive.org/content/downloads. However, for this lab, we will download
an image prepared for this session.

The vulnerabilities that we are going to see are:

Hidden field authentication: how to obtain additional information from web ap-
plications and modify the client’s generated requests or server responses to be
able to perform the attack.

Weak session identification: we will see the dangers of a weak authentication,
and in this case, how to impersonate another user by means of a session cookie.

Cross-Site Scripting (XSS): is an attack based in the vulnerabilities exploit of
the embedded HTML validation. It takes advantage on the lack of filtering
mechanisms of the input fields, allowing the data input and transfer without
any validation, being able to generate malicious command sequences or scripts.

SQL Injection: it is a vulnerability found at the input data validation of a
database associated to a web application. The origin is the incorrect filtering
of variables used in the application code that perform SQL sentences.

4.2 Start the ISO

Start the computer with MS windows. Download the OWASP ISO from the web-
page: https://goo.gl/7DoUn4. Click on the OWASP image and import in the
Virtual Box. Turn on the virtual machine and open the OWASP WTE image.

Once the OWASP WTE has started, you must follow the steps:

1. Screen resolution: The default resolution is quite low; increase it in System
-> Preferences -> Monitors

2. Start the WebScarab application: When starting the graphic interface go
to the OWASP -> Proxies -> WebScarab and click to see the following screen:

http://appseclive.org/downloads
https://goo.gl/7DoUn4

4.2. Start the ISO 35

3. Start WebGoat application:

• Open a shell

• Change to the directory where the WebGoat application is installed

cd /opt/owasp/webgoat

36 Lab 4. Vulnerabilities in web applications

• Start the application on port 8080

#sudo ./ webgoat.sh start8080 &

• Watch the messages appearing while the application starts. When the
following message appears the application will be running

INFO: Server startup in 4350 ms

4. Web browser configuration: Open the web browser and configure it to
use a local proxy, in our case WebScarab, using port 8008 by default. Go to
’Edit -> Preferences -> Advanced -> Network -> Settings...’ (may change
depending on the Firefox version)

Configure manually the proxy option as shown in the figure.

Warning! Observe that the field No Proxy for doesn’t have neither “127.0.0.1”
nor “localhost”.

Disable Firefox automatic checks for updates in ’Edit -> Preferences -> Ad-
vanced -> Update’.

At the browser address bar type http://127.0.0.1:8080/webgoat/attack

Remember: user: guest password: guest

Click on the ’Start WebGoat’ button.

4.3. Exercises 37

4.3 Exercises

4.3.1 Parameter validation

We will see the danger of not validating input parameters on a Web application or
doing a poor or incorrect validation. On ’Parameters tampering’ we will find three
exercises:

4.3.1.1 Hidden fields

Access to WebGoat’s lesson ’Exploit Hidden Fields’ in ’Parameter Tampering’. Its
goal is to buy from a web page for a lower price.

Observing the web page we can see that the field ’Price’ can’t be modified. Try
several times ’Update chart’ or ’Purchase’ or observing the code clicking ’Show Java’
to modify the product’s price. Have you found anything?

Let’s now watch the request sent to the server when we try to buy. Follow the
steps:

• Go to WebScarab and tick ’Intercept Requests’ inside ’Proxy->Manual Edit’
tab:

38 Lab 4. Vulnerabilities in web applications

• Once the requests reception has been activated, go back to WebGoat and try
to buy clicking on ’Purchase’.

• You will then see a new WebScarab window popping up with the intercepted
request. If we take a look at tab ’URLEncoded’ we’ll find variables (QTY,
SUBMIT, Price). One of the variables refers to the purchase price, try to
modify the price at column ’Value’, disable the requests interception (clicking
again on ’Intercept Requests’) and click on ’Accept Changes’.

We have been able to modify the purchasing price.

4.3. Exercises 39

4.3.1.2 e-mail not validated

Go to WebGoat lesson ’Exploit unchecked mail’ in ’Parameter Tampering’. Now
the goal is to be able to change the e-mail address where the comments typed at
the web page are sent. Enter some comments and see the code by clicking on ’Show
Java’ to be able to modify the e-mail address. Have you found anything?

Type a malicious script like:

<script >alert("XSS") </script >

into the comments field and send. Observe that you are able to add your own
script and execute whatever you want.

Now, let’s change the e-mail address field. This can be accomplished by inter-
cepting the request with webscarab and changing the hidden field "to" from we-
bgoat.admin@owasp.org to alumne@fib.upc.edu (don’t worry, no email is actually
sent during this test).

40 Lab 4. Vulnerabilities in web applications

4.3.1.3 Avoid validations on the client side

Go to WebGoat lesson ’Bypass Client Side JavaScript Validation’ in ’Parameter
Tampering’. The goal is to avoid validation implemented on the client side of the
application.

This web page sends seven values to the web server that need to match regular
expressions validated locally. Try introducing correct and incorrect values on every
field and send them clicking on ’Submit’ or observing the code clicking on ’Show
Java’ to be able to find the code implementing the fields validation. Have you found
anything?

What would happen if we sent incorrect values in all the fields? For instance a
dash (-)

4.3. Exercises 41

Data is being validated at the client side and we can’t send it to the server.
Looking at the code you can find the section implementing the validation:
if (! pattern1.matcher(param1).matches ()){
err ++;
msg += "
Server side validation violation:

You succeeded for Field1 .";
}
if (! pattern2.matcher(param2).matches ()){
err ++;
msg += "
Server side validation violation: You succeeded for

Field2 .";
}
...
if (err > 0){
s.setMessage(msg);
}

This code is downloaded when requesting the web page. Let’s try to skip the
validation:

We need to modify WebScarab configuration to be able to intercept server’s
responses. On tab ’Proxy’, check ’Intercept Responses’ an verify that ’Intercept
Requests’ is disabled.

Now reload the browser’s page to issue a new request. You will see a new
WebScarab window with the intercepted response. If we click on ’Raw’ tab from
the lower half window we’ll be able to see the server’s response and there we will
find the code to validate the fields that we want to avoid.

42 Lab 4. Vulnerabilities in web applications

Edit the code erasing the validation code: lines between “msg=’JavaScript found
form errors” and “(if (err>0 alert(msg); else”.

Uncheck ’Intercept responses’ , click on ’Accept Changes’, go back to the web
page and click ’Submit’ to send incorrect data to the server.

We have been able to avoid the client’s validation and to send incorrect infor-
mation to the server.

4.3. Exercises 43

4.3.1.4 Fail Open Authentication Scheme

Go to WebGoat lesson ’Fail Open Authentication Scheme’ in ’Improper Error Han-
dling’. Try solving the lesson generating an uncaught error in the server.

4.3.2 Session administration and authentication

4.3.2.1 Authentication using cookies

We’ll see now how applications use cookies to maintain session information and
how that information can be used to establish a session for a different user without
having its credentials.

Go to WebGoat lesson ’Spoof an Authentication Cookie’ in ’Session Management
Flaws’. The goal is to be able to establish a session as user ’Alice’ without having
her credentials.

Try authenticating as ’webgoat/webgoat’ and ’aspect/aspect’ reloading the
screen to observe how the web page uses the cookie to validate and maintain the
session. Watch the code clicking on ’Show Java’ to be able to establish a session as
user ’Alice’. Have you found anything?

Let’s take a look at the mechanism used to authenticate using the cookie:

• Log in as ’webgoat’.

• Check the WebScarab ’Intercept Request’ box and click ’Refresh’. You will
see a new window with the request; observe the cookie’s value.

44 Lab 4. Vulnerabilities in web applications

• Uncheck ’Intercept Requests’ and click ’Accept Changes’.

• Do the same for user ’aspect’ observing the value of the cookie; compare it
with the one for user ’webgoat’.

• Repeat the same process several times, observing the value of the cookie for
each user.

The value of variable ’AuthCookie’ for each user is always the same. Therefore
we can think that if we find the logic that generates that value we can try to modify
the cookie to simulate a session for another user.

Let’s study each value:

User AuthCookie
webgoat 65432ubphcfx
aspect 65432udfqtb
Alice 65432?????

We can see that variable ’AuthCookie’ always begins with ’65432’, we’ll then
concentrate on the variable part.

It looks like the number of characters of the username is directly related to the
generated code

• webgoat 7 characters -> upbhcfx 7 characters

• aspect 6 characters -> udfqtb 6 characters

• alice 5 characters ... we may then think that the code will have 5 characters

Let’s now try finding some relationship amongst the characters:
The code generated for both users begins with ’u’ but the username doesn’t

begin with the same character. But we see that both end in ’t’. Reversing the
order:

User AuthCookie
taogbew ubphcfx
tcepsa udfqtb

4.3. Exercises 45

Now, we only need to watch a bit longer the characters to discover that, each
character corresponds to one of the characters of the username in the ’AuthCookie’
alphabet. That’s a variant of the Caesar enciphering, classic and very basic method
where a character is replaced by another one, with a bijective correspondence.
t->u, a->b, o->p, g->h, b->c, e->f, w->x
t->u, c->d, e->f, p->q, s->t, a->b

Therefore to generate the code for user ’alice’:

User AuthCookie
webgoat 65432ubphcfx
aspect 65432udfqtb
alice 65432fdjmb

Now, let’s send the server the modified value of ’AuthCookie’: start a session
with for user ’webgoat’ or ’aspect’, check WebScarab’s ’Intercept Requests’ and click
’Refresh’.

On the new WebScarab window containing the request, modify the value for
’AuthCookie’ using the one we have calculated, uncheck ’Intercept Requests’ and
click on ’Accept Changes’.

You can now see a page that is greeting user ’alice’.

4.3.3 Cross Site Scripting (optional)

We will see now how to take advantage on a form vulnerability using what we have
already learnt.

Go to WebGoat lesson ’LAB: Cross Site Scripting (XSS)’ in ’Cross-Site Scripting
(XSS)’. The goal of that lesson is that the application serves a script developed by
us or any other user.

Try authenticating against the web page using different users (the password is
the same as the username) observing what features are available and looking for a
way to execute our own script when a user logs in. Any idea?

Basically this is a human resources application where every user can access to
his related information. Administrative users can query and update other users.

Authenticate as an administrative user i.e. ’John Wayne (admin)’ password
’john’.

46 Lab 4. Vulnerabilities in web applications

Select an employee from the list and click on ’ViewProfile’.
We will now modify one of the fields of that user adding a script that will be

executed when the user logs in to check his data.
Add to the field ’Street’:

<script >alert(" Stolen session" + document.cookie)</script >

Click on ’UpdateProfile’; a pop-up alert should appear since the form field is
processed without validation. Click on ’Logout’.

4.3. Exercises 47

To check whether our scripts executes also for the target user, authenticate as
the modified user, select its name in the left form and then click on ’View Profile’.

See that the application has served that script to another user, therefore we have
achieved our goal.

4.3.4 SQL Injection

We are going to study how to insert SQL sentences inside of a previously written
query in order to manipulate the correct procedures of a given application.

In ’Injection Flaws’, go to WebGoat lesson ’String SQL Injection’ (not ’LAB:
SQL Injection’). Its goal is to obtain a listing of the credit cards stored in a database.

Type ’Smith’ as a parameter and try other values. Observe the results and study
how the SQL sentence providing the listing is modified.

See that the query is waiting for a value to be entered and then used.

48 Lab 4. Vulnerabilities in web applications

What if we type two quotes without any value?

The SQL sequence is correct and returns no value. What if we type just one
quote?

4.4. References 49

Now the SQL syntax is not correct: it requires a quote at the beginning of a
string and another one at the end. We must then find a correct SQL sentence that is
always true Enter this text for ’last_name’ and execute the query clicking on ’Go!’

FIB ’ or ’1’=’1

We are closing the first quote with any value and then add an expression that
always is true (’1’=’1’). We need to remember that a quote is added at the end.
The Boolean OR operator will make the trick returning all the values of the table.

We have finally achieved to list all the values of the customer’s credit cards
stored in the database.

4.4 References

• OWASP Project , http://www.owasp.org

• OWASP Project at Sourceforge, http://sourceforge.net/projects/owasp

• Web Application Security Consortium (WASC), http://www.webappsec.org

• Common Vulnerabilities and Exposures (CVE), http://www.cve.mitre.org

– http://www.faqs.org/rfcs/rfc2660.html

– http://www.faqs.org/rfcs/rfc2616.html

– http://www.faqs.org/rfcs/rfc1945.html

50 Lab 4. Vulnerabilities in web applications

• Secure Coding: Principles & Practices, http://www.securecoding.org/

