
Lab 5

Introduction to Malware analysis

Contents
5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Laboratory environment . . . . . . . . . . . . . . . . . . . . . 51

5.3 The malware: a trojan copy of a windows live messenger . 52

5.4 Behavioural analysis . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Network traffic analysis . . . . . . . . . . . . . . . . . . . . . . 55

5.5.1 CaptureBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.2 Wireshark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Code analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Objectives

In this session, we will introduce some common approach to analyse a malware, so
that you can turn malicious executable inside out to understand their inner-workings
(technique known as reverse engineering). Knowing how to analyse a malware can
bring an element of control into an otherwise chaotic environment that exists around
a security incident. It is also a critical aspect of modern forensic analysis as it is
frequent for investigators to discover malware on compromised systems.

The approach followed in this session is reverse-engineering that has worked for
many analysts; it involves two key phases: behavioural analysis and code analysis.
During behavioural analysis, we examine how the malware interacts with its envi-
ronment. The code analysis phase allows us to learn about the specific capabilities
by examining the code of the compromised program.

5.2 Laboratory environment

When performing malware analysis, it is convenient to stay in a virtualisation en-
vironment. Such tools typically simulate the underlying hardware, allowing you to
run multiple instances of virtual machines simultaneously. For instance, you could
use Windows 7 as your base OS, while having a separate instance of Windows XP
running in another window, and a Linux instance running in another one.



52 Lab 5. Introduction to Malware analysis

Each virtual machine behaves mostly as real physical systems, in that it has its
own set of I/O peripherals, RAM, network settings, and so on. All these aspects of
the virtual machine are indeed virtualised.

The convenience of a virtualised lab comes, in part, from the flexibility of having
multiple instances of various operating systems available to you within a single
physical system. Virtualisation software can even emulate a network, so that your
lab does not need to be connected to a physical network at all. Yet, the virtual
machines will be able to communicate with each other over the simulated network,
blissfully unaware that the network is not “real”.

For this session we will use the VMware Player software. To do this, open the
virtual machine called “malware” from the link provided in the presentation and
start it. If the VMware Player asks, answer that "you copied the virtual machine".
The password of the administrator user is si2012.

5.3 The malware: a trojan copy of a windows live mes-
senger

The malicious executable which we will learn from in this session is shown in Fig-
ure 5.1 . It is a trojan copy of Windows Live Messenger - a fake instant messenger
client that was being distributed to victims via email. Many such trojans have the
capability of capturing the victims’ logon credentials, and may have other undocu-
mented features.

In this lab, we will assume that we have got the trojan executable file and the
msnsettings.dat file from the victim’s PC.

Let’s see what capabilities are built into this malicious executable. First, let’s
introduce the tools and techniques that will help with the reverse-engineering pro-
cess.

Note that in this example, as with the majority of malicious incidents you will
probably encounter, we will be examining a compiled Windows executable for which
we have no source code.

5.4 Behavioural analysis

Malware analysis typically starts examining a malicious executable with behavioural
analysis as it is easier than code analysis and provides some hints for it.

When performing behavioural analysis, we are going to infect a laboratory sys-
tem with the malware. Then we will observe how the malicious executable accesses
the file system, the registry, and the network. As we learn about the program’s ex-
pectations of its runtime environment, we will slightly adjust our analysis to evoke
additional behaviour from the program. We will also attempt to interact with the
program to discover additional characteristics it may exhibit.

Let’s see this approach in action. Imagine you have a suspicious executable that
you would like to analyse. You bring it into your lab, possible via a removable USB



5.4. Behavioural analysis 53

Figure 5.1: Windows live messenger snapshot.

disk and place it on the desktop of the virtual machine1 you are about to infect.
Now what?

First, take a snapshot of the state of the machine’s file system and the registry.
This will allow you to quickly see what major changes have occurred on the system
after you infect it.

To do this we will use the free tool called RegShot
(http://sourceforge.net/projects/regshot). RegShot is already installed in your
VM. To use it, enable the “Scan dir1” option, and in the corresponding window
type “C:\”. This will allow the tool to scan the registry and the full C: drive. Click
now “1st shot”.

After RegShot takes the first snapshot, launch the malicious executable. Interact
with it a bit (e.g., try logging into it). Then kill the process, if you can. Next, click
the “2nd shot” button in RegShot, and click the “Compare” button. You will see a
report that describes the major changes to the system’s state. In this case, we see
that, among other things, two files were added to the system.

The two files that appeared on the system after we infected it are pas.txt and
msnsettings.dat. Take a look at them using notepad.

It looks like pas.txt has captured the login credentials we used when logging into
the malicious executable. That makes sense, because we received reports that this
executable is a trojan copy of Windows Live Messenger.

The msnsettings.dat file looks like a configuration file of some sort.
1The fake windows live messenger is already copied in your VM image



54 Lab 5. Introduction to Malware analysis

Figure 5.2: The RegShot tool and its output.

Figure 5.3: The two files created by the Windows live messenger malware.



5.5. Network traffic analysis 55

Figure 5.4: Windows live messenger snapshot.

With the obtained information, reverse-engineering the malware can help you at
incident response and forensic analysis. In our scenario, we have already discovered
that Windows Live Messenger trojan makes use of the msnsettings.dat file. Now
you know to look for it on the compromised system, even if you did not initially
realise that this file was important.

Once you have a copy of msnsettings.dat, you can open it to see whether it
reveals additional details about the program. It should appear like the one reported
in Fig. 5.3. It seems that the malware uses msnsettings.dat as a configuration file.

Now, let’s take a look at the msnsettings.dat inside the live-messenger-malware
folder on the desktop. This file proceeds from the victim of the fake messenger
malware. It is shown in Fig. 5.4, in which we have highlighted some lines.

Let’s close the fake messenger and replace the msnsettings.dat in the Win-
dows folder with the victim’s one.

In the first line there is a string “test”, which we may be able to use later when
trying to understand how the trojan processes the msnsettings.dat file. Another
line, “gsmtp185.google.com” specifies an SMTP mail server; this suggests that the
malware has the ability to send email. The file also includes an email address,
“mastercleanex@gmail.com”. This may be the recipient of the information that the
trojan might attempt to send out. Of course, these are just theories at this point.
We will need to confirm or deny them during subsequent analysis steps.

5.5 Network traffic analysis

Our next step is to confirm if the fake Microsoft MSN sends some SMTP messages.
To do this, we have two options: CaptureBAT and Wireshark. You can launch
the tool you prefer, both options will provide the same conclusions, and afterwards
execute the malware again with the victim’s msnsettings.dat.

Warning: before capturing network traffic, flush the DNS cache (in windows



56 Lab 5. Introduction to Malware analysis

Figure 5.5: CaptureBat output snapshot.

command line mode, execute “ipconfig /flushdns”; you can also flush all the net-
work related caches by going in the Control Panel -> Network settings -> Network
connections-> double click on the network connection, select the Support tab and
then click on Repair’).

5.5.1 CaptureBAT

CaptureBat is a very useful and free tool available at http://www.honeynet.org/
projects/ols/capture-bat.

CaptureBAT 2 records local processes’ interactions with their environment. Cap-
tureBAT’s logs are quite easy to follow and understand because it comes with filters
that eliminate the majority of standard, non-malicious activities from the logs. You
can customise these filters to your liking, as they are text files located in the directory
where you install CaptureBAT.

If you launch CaptureBAT 3 with the “-c” parameter, it will capture any files
deleted in the background, allowing you to look at and restore even those files that
the Windows Recycle Bin cannot capture.

Launching CaptureBAT with the “-n” parameter tells the tool to capture network
traffic, like a sniffer would, saving the result into a local .cap file.

Warning! Do not terminate CaptureBAT with “ctrl+c”, CaptureBAT dumps
the data on the disk at the end of its execution. Use “enter” to terminate the
CaptureBAT process.

Open the .cap file in WireShark. As you can see on the next figure, CaptureBAT
confirmed our earlier findings about the malware 4.

If you do not like using CaptureBAT, you could use Wireshark to capture the
traffic sent by the malware.

2Install CaptureBat and reboot the system
3In command line mode, go to C:\Program Files\Capture
4If it does not show the DNS query we’re looking for, make sure that you have substituted the

msnsettings.dat in the Windows folder with the one that came in the Desktop folder

http://www.honeynet.org/projects/ols/capture-bat
http://www.honeynet.org/projects/ols/capture-bat


5.5. Network traffic analysis 57

Figure 5.6: WireShark output snapshot.

5.5.2 Wireshark

Wireshark is a full-feature network sniffer (http://www.wireshark.org). Instead
of using CaptureBAT, you can directly open Wireshark, and run the sniffer over the
network interface using the appropriate filters.

5.5.3 Analysis

As you can see on the dump reported in the Fig. 5.6, the sniffer shows that
the infected system has issued a DNS query, attempting to resolve the hostname
“gsmtp185.google.com”. The SMTP in the hostname suggests that the malware is
looking for a mail server to connect to, reinforcing our earlier theory of how the
trojan might use this hostname.

We will therefore try to intercept any e-mail that the fake messenger will possibly
send to that SMTP server. To this end, we will

1. Redirect DNS queries to localhost: you can do this in the properties of the
Windows Network Connection in the Control Panel; Go to TCP/IP properties
and set 127.0.0.1 as the primary DNS server;

2. Capture any DNS request with Fake DNS. Fake DNS is a DNS server that
you can configure to answer any DNS query with a single IP address of your
choice5. Which IP address should you use? The easiest option is to use
again “localhost”. This will redirect any DNS query to localhost; therefore, a
possible connection to “gsmtp185.google.com” on port 25 will be redirected to
“localhost:25”. Put Fake DNS to “Listen” mode.

5An alternative way, is to set up name resolution by inserting an entry for the hostname into
the ’hosts’ file on the infected system; Fake DNS is a faster alternative

http://www.wireshark.org


58 Lab 5. Introduction to Malware analysis

Figure 5.7: Fake DNS output snapshot.

3. Set up an SMTP listener on port 25, capturing any mail will be sent. An easy
way to do this is to use the Mailpot tool. Mailpot pretends to be a mail
server, happily accepting SMTP messages from clients, but not sending them
out. Instead, it stores the messages locally for your review. To use Mailpot,
run it on the host to which you have redirected the SMTP requests (localhost)
using Fake DNS and put it to ’Listen’ mode.

Now that you have set up the DNS server as localhost (in Windows network
connection settings), are replying the DNS request with localhost and are listening
the SMTP connection on port 25, you are ready to try to login with the fake MSN
and see what happens.

Now you should see both the DNS request and response in the Fake DNS window,
and in the Mailpot window there should be the email that has been sent by the fake
MSN and captured by Mailpot.

If you open the mail6, you can see the contents of the message that the trojan
is mailing to the attacker. As highlighted in the Fig. 5.8, the message includes the
victim’s Messenger username and password.

5.6 Code analysis

Behavioural analysis can be insightful and relatively fast. However, it will rarely
tell you everything you need to know about malware of moderate and advanced
complexity. That is where code analysis can be of help. It can help to reinforce

6If the mail does not open (by double clicking on it), you have to (1) close Mailpot, change
the permissions of the C:\mailpot folder to writeable (remove the thick from “Read-only”) and (3)
start Mailpot again; you may have to repeat this procedure a couple of times; if it doesn’t work
yet, you can reboot the system and try again (remember to reactivate the Fake DNS)



5.6. Code analysis 59

Figure 5.8: Mailpot output snapshot.

your behavioural findings, and can shine a light on additional properties of the
malware that you may not have discovered behaviourally.

Code analysis can be tricky and time-consuming, because in the world of mal-
ware you almost never have the luxury of seeing the source code of the program you
are analysing. Instead, you need to reverse-engineer the compiled executable’s func-
tionality by examining its code at the assembly level. A debugger and a disassembler
can help you in this task. A disassembler converts the malware’s instructions from
their binary form into the human-readable assembly form. A debugger lets you step
into the most interesting parts of the code, interacting with it and observing the
effects of its instructions to understand their purpose.

We will use OllyDbg to perform code analysis. It is free, and includes both
a disassembler and a debugger. You can download OllyDbg from: http://www.
ollydbg.de/

A good way to start analysing the malware’s code often involves looking at the
strings embedded in its executable. To do this with OllyDbg, first load the malicious
executable into OllyDbg via File -> Open. Then, right-click on the code you will
see in the disassembler window, and select Search for -> All referenced text strings.

OllyDbg will then bring up a new window that will show the strings it discovered,
as you can see on this slide. Notice that we have seen some of these strings during
behavioural analysis! Some of them look like contents of the default msnsettings.dat
file that our malware creates when infecting the system.

The reason we may be interested in looking at the embedded strings is be-
cause the string listing might include a reference to a malicious characteristic or a
behavioural trait that we would like to understand. In this case, consider the follow-
ing screenshot. We got here by highlighting one of the instances of msnsettings.dat
strings, if you press Enter, OllyDbg shows us how the program makes use of this

http://www.ollydbg.de/
http://www.ollydbg.de/


60 Lab 5. Introduction to Malware analysis

Figure 5.9: A snapshot from OllyDbg.

string.
If we wanted to pursue this path of analysis further, we could now set a break-

point on this command, run the trojan in the debugger, and see what it does. But,
we are not going to investigate this particular aspect of the malicious program,
because we will focus on another, more interesting technique.

You may recall that the version of msnsetting.dat on the victim’s system was
slightly different from the version that the trojan created on our laboratory system
when we first ran it. Specifically, in our case, the file contained the string “hello”,
while the victim’s version had the string ’test’ instead. What’s that about?

The string “test” is not visible anywhere within the body of the malicious exe-
cutable when it’s not running. That’s probably because the trojan loads this string
from msnsettings.dat during run time. To understand how the trojan uses the string
“test”, we will search for it in the memory of the running trojan.

Once we will have located the string in the trojan’s memory (described further),
we will set an access breakpoint there. A breakpoint is a condition that tells the
debugger when to pause the normal execution of the debugged program. Once the
execution is paused, the debugger will give us a chance to review the debugged
program’s run time environment to understand what it is doing. This is probably
the most useful feature of a debugger in the context of malware reverse-engineering.

To make use of this technique, load the malicious program into OllyDbg, then
run it into the debugger. Once the trojan is running, press “Alt+M” to bring up the
memory map in OllyDbg. This shows the listing of the memory segments mapped
and used by the currently-debugged executable. To search the executable’s memory
for a particular string, select the first line in the Memory Map window, and press
“Ctrl+B”; then, enter your string as ASCII text field in the dialog box. Then press
Enter.



5.6. Code analysis 61

Figure 5.10: A snapshot from OllyDbg.

Figure 5.11: A snapshot from OllyDbg.



62 Lab 5. Introduction to Malware analysis

Figure 5.12: A snapshot from OllyDbg.

It is possible that your string will be located in several memory areas. The one
you are interested in won’t necessarily be the fist one. To repeat your search, click
on the memory map window, then press “Ctrl+L” (do not forget to click on the
memory map window!).

In the case of our example, we will need to perform the initial search via
“Ctrl+B”. This will find us an instance of ’test’ that is not promising. We will
repeat the search by pressing “Ctrl+L” once.

Now that we have located the exact string “test” in the trojan’s memory, we can
set a breakpoint there. In this case we will be setting a memory access breakpoint,
so that OllyDbg pauses the program’s execution whenever it attempts to access this
particular memory area. Effectively, this will allow us to catch the trojan while it
is attempting to use the “test” string; we will then be able to see how it makes use
of the string.

To set the breakpoint, highlight the exact characters of the string “test”, then
right-click and click “Breakpoint” -> “Memory, on access”7.

The trojan will continue to run. Now we can either wait for it to try using the
string, or attempt interacting with the program with the hope it will use the string.

We can try interacting with the trojan by typing some text into its first field,
the one labeled “E- mail address”. If you type any character there after setting our
memory breakpoint, you will immediately trigger the breakpoint, as you can see on
the next figure.

We entered a character into the field (picked a letter at random: “g”). Right

7Note that this kind of breakpoint will not appear in the list of breakpoints of OllyDbg; don’t
worry, it is OK



5.6. Code analysis 63

Figure 5.13: A snapshot from OllyDbg.

away, OllyDbg comes to the foreground, because we just triggered an attempt by
the trojan to somehow use the string “test”. You can now interact with the code,
looking at its environment, and even running it as slowly as one instruction at a
time.

To execute one instruction, press F8. To examine the run-time environment of
the program, look at its registers in the top right corner of the OllyDbg window. A
register is a specialised and very fast location on the CPU that can store data.

What is going on in this part of the code? Do not worry if you do not understand
much of the assembly code you see there: this is just an introduction to malware
analysis, so we will walk you through the most important parts. OllyDbg has
highlighted the instruction that will be executed next by the program, “CMP CL,
BL”. This compares contents of two registers, CL and BL. CL points to the lowest
byte of ECX; BL points to the lowest byte of EBX, so it is an efficient way of
comparing parts of ECX and EBX registers.

Double-click the registers to see their contents. ECX contains the character we
entered, “g”. EBX contains the string that our input is being compared to, “test” (it
is stored backwards).

Press F9 to continue executing the trojan. Delete the “g” character you have
entered previously. This time, let the program match the first character of the “test”
string, and see how it compares the second character. To do this, enter “ta” in the
“E- mail address” box. If you keep triggering the breakpoint, press F9 to continue.
You want to pause right after you have had a chance to type “ta”.

Press F8 to execute one instruction after you have triggered the breakpoint, just
like you did previously. Keep on pressing F8 carefully, once at a time, until you
reach “CMP CH,BH” some lines below. This time, if you look at contents of ECX



64 Lab 5. Introduction to Malware analysis

Figure 5.14: A snapshot from OllyDbg.

and EBX registers, you will notice that the trojan is comparing the character ’a’
that we entered to the character ’e’ that it seems to expect. That is because the
CH register points to the second lowest byte of ECX; the BH register points to the
second lowest byte of EBX.

So, the trojan seems to be looking for the string “test” in the “E-mail address”
field. Exit the debugger, launch the trojan by itself, and enter “test” to see what
happens.

Voila! When you enter “test”, the trojan brings you to a brand new screen that
seems to allow you to configure the trojan’s operation. As you can see on this slide,
the configuration options let you define the passphrase to activate this string, the
address where the trojan will send captured login credentials, etc.



5.6. Code analysis 65

Figure 5.15: The configuration panels of the malware.




