
TXC (Tecnologies de Xarxes de Computadors):

Quality of Service (QoS) in networks and Internet

architectures

Jose M. Barcelo Ordinas, Jorge Garćıa Vidal, Pau Ferrer Cid

November 13, 2023

Contents

1 Quality of Service in Internet protocols and networks 3

1.1 QoS definition . 3

1.2 QoS in network architectures . 4

1.3 Static and dynamic bandwidth allocation 5

1.4 QoS parameters . 6

1.5 Types of traffic . 8

1.6 End-to-end QoS levels (service models) 9

2 Queueing management 11

2.1 Explaining congestion in the queue 11

2.2 Queueing scheduling disciplines 14

2.3 First-in-first-out (FIFO) + drop-tail 14

2.3.1 Random early detection (RED) 15

2.3.2 Explicit congestion notification (ECN) 19

2.4 Resource allocation in computer networks 20

2.4.1 Uniform fair allocation . 21

2.4.2 Maximum throughput allocation 21

2.4.3 Max-min fair allocation 22

2.4.4 Proportionally fair allocation 23

1

2.5 Queueing service stratgies . 23

2.5.1 Round robin (RR) . 23

2.5.2 Weighted round robin (WRR) 24

2.5.3 Weighted deficit round robin (WDRR) 24

2.5.4 Priority queueing with round robin (PQ-RR) 24

2.5.5 Priority queueing with weighted round robin (PQ-WRR) 25

2.6 Weighted fair queueing (WFQ) 26

2.6.1 General processor sharing (GPS) 27

2.6.2 Weighted fair queueing (WFQ): a virtual time implemen-
tation of PGPS (Optional material) 29

2.6.3 Class-based weighted fair queuing (CBWFQ) 31

2.6.4 Low latency queueing (LLQ) 32

3 Traffic shaping and policing 32

3.1 Token/Leaky bucket algorithms 34

3.2 Traffic parameters . 35

3.3 Leaky bucket algorithm with GPS scheduler 38

4 QoS models 41

4.1 Best effort . 41

4.2 Integrated services (IntServ) . 41

4.3 Differentiated services (DiffServ) 43

2

The subject TXC (Tecnologies de Xarxes de Computadors) is part of the Bach-
elor’s Degree in Computer Engineering at the Faculty of Computer Science of
Barcelona (FIB). The course provides the knowledge and skills necessary to un-
derstand the design of connectivity solutions between computers and computing
devices beyond the local environment. The basis of the course is the study of the
architecture, communication protocols and the fundamentals of data transmis-
sion technologies that support wide area computer networks, and in particular
the Internet.

These lecture notes deal with ”Quality of Service” in networks and Internet
architectures and are intended to cover about three and a half weeks of the
course (one quarter of the course). The theoretical part will consist of about
10-11 hours of lectures.

1 Quality of Service in Internet protocols and
networks

We will use the terms flow, traffic and session interchangeably throughout the
document. We define a flow as an end-to-end connection without defining the
type of network (layer 2 or layer 3). For example, in terms of Internet traffic,
a flow is a 5-tuple defined by the source and destination IP address, the source
and destination port (port L4) and the protocol type (TCP or UDP). However,
when we talk about classes of service we are assuming that a set of flows are
grouped into a class and it is the class that receives the QoS treatment. Classes
are identified by precedence bits (some bits of the packet header).

1.1 QoS definition

There are various ways of defining Quality of Service (QoS) according to different
authors, manufacturers or regulatory bodies:

• QoS refers to the ability of a network to provide better service to selected
network traffic through various technologies, such as Frame Relay, Asyn-
chronous Transfer Mode (ATM), Ethernet and 802.1 networks, SONET
and IP routed networks that may use any or all of these underlying tech-
nologies;

• QoS is the manipulation of traffic so that the network device forwards it
in a manner consistent with the behaviours required by the applications
generating that traffic;

• Quality of service measures the ability of a network to deliver high quality
services to an end user. More specifically, it designates the mechanisms
and technologies to manage data traffic and control network resources;

3

• QoS prioritises certain types of network traffic over others based on their
level of importance or sensitivity to delay, loss or other network conditions;

• The QoS solution allows policies to request network priority and band-
width for TCP/IP applications throughout the network.

QoS makes it possible to provide a better service to certain flows or connections
by increasing the priority of one flow or limiting the priority of another. This
can be done in several ways:

• congestion management tools attempt to increase the priority of a flow
or a group of flows by queuing and servicing (scheduling) queues in differ-
ent ways. The queue management tool used to avoid congestion increases
the priority by discarding lower priority flows before higher priority flows.
Examples are priority queuing (PQ), weighted fair queuing (WFQ), class-
based weighted fair queuing (CBWFQ), low latency queuing (LLQ), etc,
although other mechanisms attempt to prevent congestion before it occurs
such as random early detection (RED) or explicit congestion notification
(ECN);

• traffic shaping and policing functions give priority to one flow or a
group of flows by limiting the speed of other flows. The idea is to define
which traffic conforms to a specification, and to enforce that specifica-
tion by classifying the traffic into conforming and non-conforming. Some
action is taken on the non-compliant (or non-conforming) traffic (e.g. dis-
carding, labelling or shaping the traffic). Examples are token/leaky bucket
(TB/LB) algorithms;

• link efficiency tools maximize bandwidth use and reduce delay for pack-
ets accessing the network by limiting large flows and showing preference
for small flows. Examples are the use of TCP header compression or link
compression mechanisms.

We can observe that to provide QoS, networks allocate resources (bandwidth,
queues, buffer priorities, etc.) and to measure the goodness of service (what
quality the user receives), the network measures quality in terms of metrics
(delay, jitter, loss, etc.).

1.2 QoS in network architectures

QoS has been applied in different network architectures over time [4, 7]:

• circuit-switching: used in the telephone system allocate fixed resources
when a connection is initiated and these resources remain in use until the
connection is terminated. The advantage is the low and predictable delay

4

of these networks. However, if more users try to call and the resources are
not available, the user is denied the call. Also, only two users can be on
a call simultaneously (if Bob talks to Alice and wants to talk to Mary as
well, he has to hang up Alice and dial Mary’s phone number);

• packet-switching: networks such as ATM, Frame Relay or Internet allow
everyone to be on the network at the same time and dynamically allocates
resources among the active users of the network. A packet-switched net-
work allows several devices to communicate simultaneously and needs to
allocate sufficient resources to them to communicate. If there are many
users, they receive fewer resources, but are not prevented from communi-
cating.

What are the challenges, in terms of quality of service, of packet-switched net-
works? (i) The lack of predictability for real-time applications such as VoIP,
online gaming, video conferencing and IPTV, and (ii) the high jitter that oc-
curs whenever a large number of packets pass from a faster network link to a
slower one or when several network links are merged into a single link. When
this happens, network devices such as routers and switches get stuck and force
packets to wait inside their memory buffers, which increases the time it takes
for packets to traverse a network.

The goal is therefore to provide packet-switched networks, such as the Internet,
with the necessary resources and performance characteristics required by real-
time applications, just like circuit-switched networks.

1.3 Static and dynamic bandwidth allocation

Links have a C capacity that can be shared between users (or flows). However,
there are several ways to share that capacity. The idea behind static band-
width allocation [4, 7] is that flows are allocated a fixed amount of bandwidth
from the link capacity, and therefore that fixed amount of link bandwidth cannot
be used by other flows. If the flow does not use its allocated bandwidth, then
the bandwidth is not used. Examples of techniques that allow static allocation
are TDMA.

On the other hand, dynamic bandwidth allocation is a technique where
flows are allocated an amount of bandwidth, but if the flow does not use that
bandwidth, it can be used by other flows. Dynamic bandwidth allocation is
based on the idea of statistical multiplexing.

Example 1.1 (Dynamic bandwidth allocation) Assume a 100Mbit/s link,
and 10 users are receiving 10Mbit/s. If a user uses an average of 1Mbit/s, the
other 9Mbit/s allocated to this user are lost. On the other hand, suppose we
know that 5 users send traffic at an average of 1Mbit/s, and 5 of them normally
reach their 10Mbit/s. There are 45Mbit/s unused. There are 45Mbit/s unused.

5

That leaves 45Mbit/s unused, so we could allocate that bandwidth to other users
so that, on average, we never reach 100Mbit/s of link capacity.

By definition, fixed bandwidth networks have to operate in the worst case (traffic
peaks), while dynamic bandwidth networks operate based on average traffic.

1.4 QoS parameters

Quality of Service parameters are metrics used to determine the performance of
different applications on the Internet. The main metrics are bandwidth, volume,
loss and delay.

• Bandwidth (or throughput): is the amount of link capacity a flow
requires. It is measured in bit/s.

Example 1.2 (Bandwidth management) One of the things we can do
with QoS is to create different queues and put certain types of traffic in
different queues, for example, configure the router so that queue one gets
50% of the bandwidth, queue two gets 20% of the bandwidth, and queue
three gets the remaining 30% of the bandwidth.

• Volume: is the number of bytes transmitted in a time interval. Volume
can also be viewed as the number of bytes consumed in an arbitrary period
of time.

Example 1.3 (Volume SLA) Think of a service level agreement (SLA)
for a smart phone in which the amount of bytes you can transmit for the
tariff you pay is fixed (e.g. 2GB). From the consumption established in
the contract, you start paying per byte transmitted.

• Losses: is the number of packets lost in a transmission. If you send 100
packets and only 95 arrive at the destination, you have a 5% packet loss.
Losses usually occur when there is congestion. The causes of congestion
are: i) bandwidth mismatch (e.g. high capacity link with low capacity link,
Figure 1.a), ii) aggregation (e.g. multiple links multiplexed on a single link,
Figure 1.b), and iii) extra-traffic resulting from faulty hardware/firmware,
excess retransmission due to data corruption and high traffic applications
or misbehaving hosts (e.g. malware). When queues are full and packets
need to be discarded. With QoS, at least we can decide which packets
are discarded when this happens. Other causes of packet loss are signal
degradation (e.g. attenuation), noise and faulty hardware;

6

Figure 1: Contribution to congestion, a) bandwidth mismatch, and b) aggrega-
tion of traffic.

• Delay: is the time it takes for an individual packet to traverse the net-
work. We can define two types of delays:

– the first type of delay is the latency (or end-to-end delay or
round trip time, RTT) defined as the time it takes a packet to
travel from source to destination, and it is measure in ms. The end-
to-end delay is composed of several delays such as processing delay
(time it takes for a device to perform all tasks required to forward
the packet), queuing delay (amount of time a packet is waiting in a
queue), serialization (or transmission) delay (time it takes to send
all bits of a frame to the physical interface for transmission), and
propagation delay (time it takes for bits to cross a physical medium);

– the second type of delay is jitter and is defined as a measure of the
variation in packet delay, figure 2. High jitter occurs when there is
congestion, it is to say, when a large number of packets pass from a
faster network link to a slower one (bandwidth mismatch) or when
several network links are merged into a single link (aggregation). The
router or switch is forced to buffer the packets, which increases the
time it takes for packets to traverse the network. Other causes of
jitter are retransmission of L4 protocols or dynamic rerouting.

Example 1.4 (jitter) Suppose an IP phone sends a constant stream
of voice packets 10 ms separated. Due to network congestion, some
packets are buffered and therefore delayed. The delay between packet
1 and packet 2 is 20 ms, the delay between packet 2 and packet 3 is 40
ms, the delay between packet 3 and packet 4 is 5 ms, and so on. The
receiver of these voice packets must deal with the jitter by ensuring
that the packets have a constant delay or it will experience poor voice
quality.

7

Figure 2: Contribution to Jitter: packets are buffered and the input space
between packets is different from the output space.

There has always been much debate as to whether delay can be avoided by
increasing the capacity of the devices. End-to-end delay can be minimised by
prioritising some of the different components. For example, better CPUs and Hw
will improve processing delay, a good queue management scheme will improve
queuing delay, and increasing the capacity of a link will improve transmission
time. Propagation delay is something we cannot change.

What about jitter? Most people think that jitter can be avoided by increasing
link capacity. However, this is not true. Jitter is not related to increasing capac-
ity, and it is possible to have low jitter on low bandwidth links and high jitter
on high capacity links, and vice versa. Jitter is related to having high capac-
ity links connected to low capacity links or when several links multiplex traffic
onto a single link. In these cases, packets from one connection are queued with
others, and the separation between them may increase or decrease, producing
variable gaps between packets on the same connection. Traffic shapers can cope
with jitter by separating packets of the same connection with the same spacing.

1.5 Types of traffic

Applications produce different types of traffic with different traffic parameters
and different QoS parameter requirements. Let us look at some examples.

• Non-interactive applications: such applications typically upload or
download files. Examples are web transfer or file transfer, among others.

Example 1.5 (file transfer) Let’s take a 10 MB file transfer with IP
payloads of 1500 B as an example. This file transfer involves 10485760
B of transfer, and about 10485760/1460= 7182 IP packets (removing IP
and TCP headers). High bandwidth reduces the file transmission time,
since a 10Mbit/s throughput connection transmits the file in 8.38 s and a
100Mbit/s throughput connection transmits the file in 0.838 s.

Then, bandwidth is important, since minimizes file transfer times. Packet
losses are not important, as TCP will recover them, at the cost of increas-

8

ing end-to-end delay, and jitter is not important, as we are not interacting
with the download, just waiting for it to finish;

• Interactive applications: such applications often connect to servers,
such as SSH to connect a client to a router or switch or to remotely run
processes on a server. These applications do not require bandwidth, as
the transfer consists of only a few bytes. The delay is not important,
except if you access the server over a satellite link (500−700ms delay),
which means there will be a short pause before you see the characters
appear on your console. The best we can do with QoS is to prioritise
these connections over bandwidth-hungry applications;

• Voice and video applications: are very sensitive to delay, jitter and
packet loss.

Example 1.6 (VoIP application) Let’s assume a VoIP (voice) appli-
cation using a simple G711 codec, which sends packets every 20ms on a
160B data payload. The IP, UDP and RTP headers add 40 bytes of over-
head, so the IP packet will be 200 bytes in total. For one second of audio,
the phone will create 50 IP packets. 50 IP packets * 200 B = 10 000B/s
per second. That is, 80 kbit/s. Other codecs, such as G729, reduce the
required bandwidth to 24 kbit/s at the cost of reduced audio quality.

Bandwidth is not an issue in VoIP, but delay is, since a conversation is in
real time (you don’t want to wait to hear the other person). Jitter is also
an issue, because the codec expects a constant stream of IP packets with
voice data that it has to convert back into an analogue signal. Losses are
not a problem, as long as they are limited. A good VoIP connection should
have to guarantee an end-to-end delay ≤ 150ms, a jitter ≤ 20−30ms and
a packet loss ≤ 1%.

Video traffic has similar requirements to voice traffic, and a typical video
connection should have an end-to-end delay between 200−400ms, a jitter
between 20−50ms and a packet loss between 0.1%-1%.

1.6 End-to-end QoS levels (service models)

Service levels refer to the actual end-to-end QoS capabilities, i.e. the ability of
a network to provide the service required by a specific network traffic from end-
to-end or edge-to-edge. These QoS levels depend on the QoS strictness, which
describes the extent to which the service can be limited by specific bandwidth,
delay, jitter and loss characteristics. We can consider three end-to-end levels:

• Best effort: there is no guarantee for flows in terms of bandwidth, delay,
jitter and loss characteristics. It is characterised by being treated with
low priority in case buffering systems apply a queuing priority policy, or if

9

there is no buffer priority scheme such as using a FIFO scheduler (FIFO
is sometimes said to provide a best-effort service). In general, the Internet
was designed as a best-effort service, however, if other levels of end-to-end
QoS are used, any application sending traffic without any requirements is
considered to be best-effort traffic, and so the network will try to give the
”best” it can or drop out if it cannot (without informing the endpoints);

• Soft QoS (DiffServ, differentiated services): some traffic is treated
better than others in terms of better management, higher bandwidth,
lower delay (end-to-end and jitter) and lower losses. Flows are grouped
into classes, and special treatment is given to classes and not to flows.
Therefore, this treatment is statistical and no hard guarantee is given
to specific flows. This service is achieved by using priority queuing (PQ)
schemes, custom queuing (CQ) schemes, queue management (QM) schemes,
traffic shaping and monitoring, and scheduling;

• Hard QoS (IntServ, guaranteed service or integrated service): a
robust quality of service is guaranteed in terms of bandwidth, delays and
losses. This is achieved by using a reservation scheme, together with prior-
ity queuing (PQ), traffic shaping and monitoring and scheduling schemes.

Flow classification (hard QoS) can be done using ACLs (access lists). ACLs
usually work on L3 and L4 headers. However, modern tools such as the CISCO
Network Based Application Recognition (NBAR) tool is able to identify (and
then classify) flows in terms of application information such as URL’s, MIME
type of an HTTP packet or user-agent (Mozilla, Opera, etc).

The class classification (soft QoS) can be done by modifying the precedence
bits. The precedence bits are part of some field in the packet. For example,
in an IP packet, in the 90’s, the first three most significant bits (precedence
field) of the ToS (type of service, 1B) field are used to mark the class to which
the flow belongs, figure 3.

Figure 3: Precedence field.

This field was later extended to 6 bits in DiffServ architectures (DSCP field).
The flow is identified by an ACL, the class is established by marking the prece-
dence bits, and then from that router, packets are classified as belonging to a
class by identifying the precedence bits.

10

2 Queueing management

Packets arriving at a router are inspected and routed to an exit interface. How-
ever, in this process, packets are queued in a buffer waiting to be served on each
interface. We can see in the figure 4 a router with 6 interfaces, and input/output
queues on each interface.

Figure 4: Queues in the interface of a router.

2.1 Explaining congestion in the queue

Suppose a queuing system in which the arrival rate has a Poisson distribution of
parameter λ (in packets/s). That is, if we define N(t) as the number of arrivals
in the interval (0,t), then N(t) obeys the Poisson distribution (λt):

P{N(t)} =
(λt)n

n!
e−λt (2.1.1)

and the inter-arrival times are independent and obey an exponential distribution
Exp(λ):

P{interarrival time > t} = e−λt (2.1.2)

Figure 5: Poisson process (arrival process).

11

Remember, that an exponential distribution f(x)=λe−λx has average E[x]=1/λ.

The M/M/1 queuing system is a mathematical framework that models a queu-
ing system whose arrival rate has a Poisson distribution of parameter λ packet/s
and the service rate is the number of customers served per unit time, which is
exponentially distributed with mean 1/µ. The length of the packets is exponen-
tially distributed. Since, if C (bit/s) is the capacity of the link (constant), and
the transmission time is given by Tt = L/C, saying that the packet length is
exponentially distributed, is the same than saying that the transmission time
(service time) is exponentially distributed. Let us assume that the transmis-
sion time (service time) is exponentially distributed with parameter µ. Then,
Tt follows the distribution g(t)=µe−µt with average service time 1/µ, i.e., the
average transmission time is Tt = 1/µ.

The system load is defined as ρ = λ/µ. We can now calculate (not developed
in these lecture notes) the following metrics:

• The mean number of customers in the system (N):

N =
ρ

(1− ρ)
=

λ

(µ− λ)
(2.1.3)

• The mean delay per customer in the system (also called mean
throughput time or system time): is obtained by Litte’s formula
where N = Dλ (it is to say, the mean number of customers in a system
is equal to the mean delay multiplied by the number of arrivals). From
Little’s formula, we can obtain the mean delay,

D =
N

λ
=

1

(µ− λ)
=

1

µ(1− ρ)
(2.1.4)

• The mean delay per customer in the queue: is the delay in the
system minus the delay in the service.

WQ = D − Tt =
1

(µ− λ)
− 1

µ
=

ρ

(µ− λ)
=

ρ

µ(1− ρ)
(2.1.5)

• The mean number of customers in the queue (NQ):

NQ = λWQ =
ρ2

(1− ρ)
(2.1.6)

• The mean number in the service (NS):

NS = N −NQ = ρ (2.1.7)

Example 2.1 (The M/M/1 queue system) Let us have a communication
in which packets arrive Poisson distributed with one packet every 2.5ms (i.e.,

12

arrival rate λ= 1 packet/(2.5ms)= 400 packets/s). Packet transmission times
are exponentially distributed with mean 2ms (i.e. 1/µ=2ms or µ= 500 pack-
ets/s). The load is ρ=400/500= 0.8.

Thus, the mean delay per packet in the system is 1/(500-400)= 10−2 s= 10ms,
the mean delay per packet in the queue is W= 8ms. The mean number of
packets in the system N=4 packets and the mean number of packets in the
queue is NQ=3.2.

Observe that when the load ρ ∼ 1, the mean number of customers in the system
N and the mean delay per packet in the system increase unbounded (N ∼ ∞
and D ∼ ∞). In other words, when the number of arrivals in the systems equals
or exceeds the number of services, the queue grows and the delay increases. In
this situation, we say that there is congestion.

Example 2.2 (Congestion in TCP) We can observe, figure 6, the through-
put and delay in a queueing system using TCP and the effect of increasing ρ.
The knee is the point from which throughput increases very slowly and delay
increases rapidly, while the cliff is the point from which throughput begins to
decrease very rapidly to zero (congestion collapse) and delay approaches infin-
ity. The goal of congestion control mechanisms is to stay to the left of the
cliff, while the goal of TCP congestion avoidance mechanisms is to stay to
the left of the knee. Examples of TCP congestion control mechanisms are
TCP slow-start, back-pressure mechanisms, throttling packets, etc. Examples of
congestion avoidance mechanisms are TCP’s congestion avoidance mech-
anism. A key question is how to detect congestion in the network, e.g., using
explicit congestion notification (ECN) mechanims, see section 2.3.2.

Figure 6: Throughput and delay as a function of the load ρ. Congestion collapse
when ρ ∼ 1.

13

2.2 Queueing scheduling disciplines

Queue scheduling disciplines define how packets are buffered while waiting to
be transmitted. The most common queue scheduling disciplines in networks are
FIFO (first in, first out), PQ (priority queuing) and FQ (fair queuing). Queue
scheduling disciplines have two main parameters: bandwidth (scheduling),
which determines which packet is transmitted next, and buffer space (buffer
management), which determines which packet is discarded next (if necessary).
Queue scheduling disciplines influence the delay (latency and jitter), throughput
or losses of a flow.

2.3 First-in-first-out (FIFO) + drop-tail

This is the classic Internet queuing discipline (best effort). The drop-tail mech-
anism means that arriving packets are discarded when the queue is full, regard-
less of the flow. The main problem with FIFO is that the service received by
one flow is affected by the packet arrivals of all other flows. That is, the flow
does not receive a particular service, regardless of the service given to other
flows. On the other hand, the management of drop queue buffers forces routers
to have a very large buffer size to maintain high utilisation, resulting in station-
ary queues and, subsequently, long delays. Steady-state queues means that,
in general, queues take some time to reach the regime predicted by queueing
theory (e.g., the M/M/1 queuing system). The reason is that queues do not
increase instantaneously to the high levels predicted by high loads, but increase
(in the transient period) until the steady state (the equilibrium state) is reached.
Transient state means that the state of the queue depends on the time t, while
the steady state means that the state of the queue does not depend on the time
t. A heavy steady state with long delays is reached after some time having a
heavy load (ρ∼1).

In addition, flows suffer from burstiness, synchronisation and lock-out (block-
ing). Burst transmission (burstiness) occurs when hosts send a high-
bandwidth transmission (large number of packets) in a short period of time.
Bursts cause long delays and queuing losses. Moreover, hosts react in the same
way (same algorithm) when packet losses occur in bursts (burstiness) periods.
This causes a synchronisation effect that causes the same situation to happen
to the same flow when new packets arrive in the queue. Then, a side effect of
burstiness and synchronisation is that a few flows can monopolise the queue
space (the lock-out effect).

Different disconnection mechanisms have been proposed to deal with these ef-
fects. In general, there are several strategies that can help avoid congestion and
reduce queue sizes when overloading occurs. The two main approaches are to
drop the packets with some strategy and to mark the packets for later action at
some network node or at the endpoints (hosts). Here are some ideas:

14

• Synchronization: can be solved using random drop which consists of
randomly dropping some packets from the queue;

• Lock-out: can be solved using front drop which consists of dropping
packets at the head of the queue;

• High steady-state queuing: can be solved using early drop which con-
sists of dropping packets before the queue is full;

• Burstiness: can be solved using early drop, but taking care of not drop-
ping packets too early because the queue may reflect only burstiness and
not true overload;

• Fragile flows: can be solved using preference dropping, identifying (clas-
sifying) flows on the fly, and mark critical flows for a specific treatment
(not dropping them);

• Host misbehaving: can be solved dropping packets proportional to
queue occupancy of flow.

Therefore, the goal of a good approach should be to: i) maintain high through-
put, ii) maintain low delay, iii) accommodate bursts, iii) queue size should reflect
the ability to accept bursts rather than steady state queues, and iv) in case of
using TCP/IP, improve the performance of the end-to-end protocol (e.g. TCP)
with minimal hardware changes.

2.3.1 Random early detection (RED)

Random early detection (RED) [2] is one of the most popular techniques
used on the Internet for congestion avoidance and queue management, acting
as a low-pass filter. RED works by monitoring the traffic load at points in the
network and stochastically discarding packets if congestion starts to increase.
The result of discarding is that the source detects the discarded traffic and
slows down its transmission, and is primarily designed to operate on TCP/IP
networks. RED starts dropping packets randomly when the average queue size
exceeds a threshold value (minth). The packet drop rate increases linearly as the
average queue size increases until the average queue size reaches the maximum
threshold (maxth). Thereafter, a certain fraction - called the mark probability
denominator - of packets is dropped, again at random. The minimum threshold
must be greater than some minimum value so that packets are not discarded
unnecessarily. The difference between the maximum and minimum threshold
must be large enough to prevent global synchronisation.

15

Figure 7: Random early detection (RED).

• On arrival of each packet, calculate the average queue length according to
an exponential weighted moving average (EWMA) algorithm [2]:

avgQnew = (1− wq) ∗ avgQold + wq ∗Qcurrent
length (2.3.1)

where avgQnew is the new average queue length being calculated at this
sample, avgQold is the old average queue length during the previous sam-
ple, Qcurrent

length is the instantaneous queue length at the router, wq is a weight
associated to the current queue length (it is usually a small value, e.g., wq

=0.002).

In CISCO routers, the weight is configured using a value n such that
wq=1/2n. Thus, high values of n (called ”exponential weight factor” by
CISCO) imply low values of wq. So, for high values of n, the previous
average queue size becomes more important. A large factor smooths out
the peaks and lows in queue length. If the value of n gets too high, RED
will not react to congestion. Packets will be sent or dropped as if RED
were not in effect. If the value of n gets too low, RED will overreact to
temporary traffic bursts and drop traffic unnecessarily;

• If avgQnew ≤ minth do nothing (low queueing, send all packets, dropping
probability Pd=0);

• If avgQnew ≥ maxth drop packets with dropping probability Pd=1 (large
queueing, protect from misbehaving sources);

• Else mark (or drop) packet in a manner proportional to queue length to
protect against synchronization. For that, calculate dropping probability

16

Pd according to:

Pd =
maxp(avgQ

new −minth)

(maxth −minth)
(2.3.2)

where maxp is the maximum probability of dropout (in the original paper
it was set to 0.02, nowadays it is usually set to 0.5);

• in case the queue is measured in bytes and not in packets, we can introduce
a normalizing constant:

Pd = Pd
Packet size

max Packet size
(2.3.3)

• solving the bias: when the average queue length is constant, the number
of packets arriving between dropped packets becomes a geometric random
variable with Pd [2]. This means that packet drops are not uniformly
distributed, since the arrival of packets between two dropped packets is not
constant (sometimes few packets arrive and sometimes more arrive). It is
undesirable to have too many marked packets close together, and it is also
undesirable to have too long an interval between marked packets. Both of
these events can result in global synchronization, with several connections
reducing their windows at the same time. Therefore, we recalculate the
drop probability with a new value that we call Pa, to emulate dropping
packet probabilities following a uniform variable distribution:

Pa =
Pd

(1− count ∗ Pd)
(2.3.4)

with count the number of packets queued since the last drop. To decide
whether the packet is dropped or not, an R value is generated using a
uniform random distribution between [0,1], and then the packet is queued
if Pd≤R, and dropped otherwise;

• A final observation to consider is what happens if the queue is empty and a
new packet arrives. Since RED is invoked on packet arrival, it is possible
that the average queue was large, there were no arrivals, the queue is
empty, and a new packet arrives. In this case, RED may incorrectly
indicate high congestion and drop the packet, even if the queue is empty.
To fix this, we add a new condition before calculating the average queue
length. We use eq (2.3.1) if the queue is not empty, and use the following
equation if the queue is empty:

avgQnew = (1− wq)
m ∗ avgQold (2.3.5)

where m = (idle stop time− idle start time)/(avgTtx) with avgTtx is the
average transmission time of a packet defined as avgTtx=(mean packet
size/bandwidth), since packet sizes can be variable in Internet. The
idle start time is the time when the queue started to be idle, and idle stop
time is the time when the queue started to be busy again.

17

The algorithm now is quite simple:

Step 1 If queue is empty calculate avgQnew according to eq (2.3.5), elsewhere
calculate avgQnew according to eq (2.3.1);

Step 2 If avgQnew≤minth enqueue the packet, elseif minth≤avgQnew≤maxth

calculate Pd and Pa according to eq (2.3.2) and (2.3.4);

Step 3 If Pa≤R enqueue the packet, else drop the packet.

RED advantages are:

1. avoiding congestion;

2. avoiding global synchronization;

3. avoiding lock-out; and

4. maximize power function that is the ratio of throughput to delay (im-
plying no losses and low delays).

However, RED has some drawbacks, such as:

1. being extremely sensitive to parameter settings (difficult to tune);

2. producing wild queue oscillations upon load changes;

3. failing to prevent buffer overflow as the number of sources increases; and

4. failing to help fragile flows (eg: small window flows or retransmitted pack-
ets).

There are variations such as RED with multiple thresholds that refine the dis-
card probabilities between thresholds, or other proposals that maintain a his-
tory of packet drops, identifying flows that use disproportionate bandwidth from
fragile flows.

One of the authors of RED, Van Jacobson, mentions that RED was distrusted
by network operators due to two bugs. Van Jacobson, with Kathy Nicholls and
Kedar Poduri proposed an enhancement in a paper called ”RED in a different
light” in 1999 (http://mirrors.bufferbloat.net/RelevantPapers/Red_in_
a_different_light.pdf). This paper [3] was never published, and Van Jacob-
son mentions in an interview in blog https://gettys.wordpress.com/2010/

12/17/red-in-a-different-light/ by Jim Getty that the paper was rejected
due to a lack of humour in one of the reviewers in the program committee. For
a discussion on this topic read the blog and make a look to the paper for the
solution (and guess which is the famous figure).

Currently RED is supported in other RED-based mechanisms, such asWeighted
RED (WRED, wq= 2n in CISCO routers) where a single queue may have sev-
eral different sets of queue thresholds. Each threshold set is associated to a

18

http://mirrors.bufferbloat.net/RelevantPapers/Red_in_a_different_light.pdf
http://mirrors.bufferbloat.net/RelevantPapers/Red_in_a_different_light.pdf
https://gettys.wordpress.com/2010/12/17/red-in-a-different-light/
https://gettys.wordpress.com/2010/12/17/red-in-a-different-light/

particular traffic class. Other methods such as flow-based WRED (FRED),
among others watch aggressive UDP flows that use to much queue and dis-
card them. In any case, all of these variations have as based the original RED
mechanism.

2.3.2 Explicit congestion notification (ECN)

Explicit congestion notification (ECN, RFC 3168, 2001) is an alternative
mechanism used in the Internet to avoid congestion without dropping packets
in the queue. The idea is to notify sources to perform a flow control mechanism
when congestion is detected on a router. This is why it usually works with
a protocol that performs flow control such as TCP. Let’s see how it works in
TCP/IP networks. When the queue of a router reaches a threshold, the packet
is marked (in the case of TCP/IP packets, 2 bits of the ToS field of the IP
header are used as the ECN field), figure 8.

Figure 8: DS field: differentiated service code point (DSCP) and explicit con-
gestion notification (ECN) fields.

When the packet arrives at its destination, TCP marks the ECN field of the
ACK packet in order to notify the source that there is congestion on the route
to the destination. In this way, the TCP source learns that there is congestion
and reduces its congestion window to regulate the traffic flow. The two bits are
marked as follows:

• 00 - Not ECN-capable transport, Not-ECT;

• 01 - ECN-capable transport(1), ECT(1);

• 10 - ECN-capable transport(0), ECT(0);

• 11 - Congestion experienced, CE;

when the source or destination does not support ECN, they mark packets with
the Not-ECT code point; when the source and destination support ECN, they
mark packets with the ECT(0) or ECT(1) fields (routers treat the ECT(0)
and ECT(1) codepoints as equivalent). If the router is using RED, experiences

19

congestion, and the router supports ECN, it can change the code point to CE
instead of discarding the packet.

TCP endpoints negotiate ECN support in the 3WHS and use two flags: the
destination uses the ECN-echo flag to send a flag to the sender indicating
that there is congestion on the network, and the source uses the Congestion
Window Reduced (CWR) flag to send a flag indicating that it has reduced
the TCP congestion window.

ECN is good at reducing the number of packets lost in transactional protocols
such as HTTP or SQL requests, but not so good in bulky protocols (e.g., FTP)
that send large files and are good at forwarding packets when packets are lost.
Operating systems such as Linux Ubuntu, Windows Server and Apple support
ECN signalling by default.

2.4 Resource allocation in computer networks

Let us define a resource C, and let be ci user i demand of resource C, yi user i
use of resource C, and xi user i allocation of resource C. We can observe that
it has to be satisfied that:

yi ≤ ci ∀i = 1, . . . , n (2.4.1)

That is, a user uses yi less or equal to what demands ci. The point is that there
are resource allocation mechanisms that allocate more than what is demanded
(inefficient) or allocate less than what is demanded (unfair). In general, if xi≤ci,
then yi=xi≤ci, and if xi≥ci, then yi=ci≤xi. The following definitions are used
in resource allocation:

User satisfaction occurs whenever xi=ci. That is, the user receives what
he/she demands.

Efficient allocation (also called network resource utilization) is defined
as the share of a resource that always causes the entire resource to be used:

n∑
i=1

yi = C (2.4.2)

Network satisfaction is generally defined as an allocation in which the most
demanding users receive more. This is because, the most demanding users pay
more for the use of the resource.

Fairness (”equidad” in Spanish) measures whether users or applications or flows
are receiving a fair share of the system’s resources. In TCP this means that no
single flow receives a larger share of the network than others, even if there are
other protocols besides TCP. On the Internet, fairness is only achieved if all
flows play by the same rules, a situation that is difficult to occur as fairness is
poorly defined for short flows, and there are many versions of TCP coexisting,

20

different transport protocols (TCP vs UDP), different traffic profiles (bulky
traffic vs transactional traffic), different link utilisation and traffic demands,
different RTT’s, etc.

The concept of fairness is closely linked to the allocation of resources in net-
works. One metric to measure fairness is the Jain index. Suppose n users share
a resource. Each user receives xi amount of the resource, with i=1, . . . , n.
For example, consider a link with capacity C bit/s and the allocation xi is an
allocation of bandwidth over the link of capacity C. The Jain index is defined
as:

JI =
(
∑n

i=1 xi)
2

n(
∑n

i=1 x
2
i)

=
x̄2

x2
(2.4.3)

2.4.1 Uniform fair allocation

If we perform a uniform allocation of xi=C/n, then

JI =
(
∑n

i=1 xi)
2

n(
∑n

i=1 x
2
i)

=
(
∑n

i=1 C/n)2

n(
∑n

i=1(C/n)2)
=

(nC/n)2

n(C/n)2n)
= 1

Therefore, given that JI=1, the uniform equal allocation is a fair allocation.
However, as we can see in the following example, the uniform fair allocation is
not an efficient allocation.

Example 2.3 (Uniform fair allocation) Let us have N=4 users that share a
link with capacity C= 16Mbit/s and they have demands of c1= 2Mbit/s, c2=
4Mbit/s, c3= 10Mbit/s and c4=15Mbit/s.

If we perform a uniform allocation of xi=C/N = 4Mbit/s, then JI= 1, and
it is fair, however it is not efficient since user 1 needs 2Mbit/s and receives
4Mbit/s, thus 2Mbit/s are unused.

The reason is that uniform allocation does not take demands into account. If a
user is allocated xi = C/n ≥ ci, then it is not efficient, even if it is fair (JI=1).

Other allocations are possible. Let us see some examples.

2.4.2 Maximum throughput allocation

Maximum throughput allocation schedules packets to the least demanding
flows until the resource (e.g. CPU, capacity, etc.) is consumed.

Example 2.4 (Maximum fair allocation) With this strategy, example 2.3
will have as allocation x= (2, 4, 10, 0), and

JI =
(
∑n

i=1 xi)
2

n(
∑n

i=1 x
2
i)

=
(2 + 4 + 10 + 0)2

(4 ∗ (4 + 16 + 100 + 0))
=

256

480
= 0.533

21

Thus, we can see that the allocation is efficient, but not fair. The most demand-
ing sources will suffer from ”starvation”, as they will have to wait for the less
demanding sources to finish (e.g. they have no data to transfer).

The customer satisfaction is low, as most users suffer from ”starvation” (low Jain
index). In addition, network operator satisfaction is low, as more demanding
users tend to pay more, so that the benefit is not maximised. On the other
hand, the resource utilisation (efficiency) of the network in general is optimal,
as resources are fully utilised. In conclusion, fairness is not easy to measure, as
it depends on the point of view (user, network operator, resource utilisation).

2.4.3 Max-min fair allocation

So the question is: are there other allocations that are more efficient than a
uniform allocation and still fair? The answer is yes if we use linear and non-
linear optimisation models. As an example, let’s takemax-min fair allocation
where we consider a resource of capacity C, demands ci (with i=1, . . . , n) and
we would like to allocate the resource in such a way that yi = xi; thus:

yi = xi ≤ ci (2.4.4)
n∑

i=1

xi ≤ C

A max-min fair allocation is a vector of allocations x∗ = (x∗
1, . . . , x

∗
n) if, 1) it is

a feasible set of solutions (i.e. satisfies eq (2.4.4)), and 2) if for each i=1, . . . ,
n, x∗

i can not be increased, while maintaining the feasibility (i.e. satisfies eq
(2.4.4)), without decreasing xi for some i for which xi≤x∗

i .

The max-min fair allocation gives more priority to smaller flows (i.e., maximize
the minimum rate of each flow or in other words), in the sense that if xi≤x∗

i then
no increase in x∗

i no matter how large, can compensate for any decrease in xi,
no matter how small. In general, max-min provides better fairness than max-
imum throughput schedulers since shares the resource among all users (avoids
starvation).

In general, max-min allocation is hard to calculate mathematically, but there is
an easy algorithm to find a max-min allocation. The idea is to allocate in order
of increasing demand, no flow gets more than demand, and the excess, if any,
is equally shared:

Step 1: label users with demands from lowest to highest;

Step 2: assign xi = C/N (uniform allocation) bit/s to each user;

Step 3: If x1 = C/N ≤ c1, stop

otherwise; If x1 = C/N ≥ c1, add (x1-c1) to the rest of users 2, . . . , n,
so, they receive xi = C/N + (x1-c1)/(n-1), with i=2, . . . , n and x1=c1,

22

Step 4: iterate with the following user i if it receives more than its demand ci.

Example 2.5 (Max-min fair allocation) If we repeat the previous example
with demands c1= 2Mbit/s, c2= 4Mbit/s, c3= 10Mbit/s and c4=15Mbit/s, we
can achieve an allocation of x=(2, 4, 5, 5) Mbit/s with a Jain’s index JI=0.914
and a network utilization of 100%.

Max-min implementation in real queue systems results in PQ-RR queue man-
agement systems.

2.4.4 Proportionally fair allocation

There are other allocations such as proportionally fair allocation. In pro-
portionally fair allocation, what is given to one flow is taken away from others
in proportion to their allocation. A proportionally fair allocation is a vector of
allocations x∗ = (x∗

1, . . . , x
∗
n) if, 1) it is a feasible set of solutions (i.e., it satisfies

eq (2.4.4)), and 2) if for any other feasible vector x = (x1, . . . , xn), the aggregate
of proportional changes is zero or negative

∑n
i=1(xi − x∗

i)/x
∗
i≤0.

Proportionally fair allocation also gives more priority to smaller flows, but less
emphatically. It says that if user i increases its allocation, there will be at least
one other user whose rate will decrease and, moreover, the proportion by which
it decreases will be greater than the proportion by which user i’s rate increases.
Proportionally equal allocation (like max-min equal allocation) avoids source
starvation.

Proportionally fair allocation implementation in real queue systems results
in WFQ queue management systems.

2.5 Queueing service stratgies

The objective is to define a set of queues served by a single server using a first-in,
first-out (FIFO) scheduling policy. Since the number of flows can be large and
it is impractical to define a queue per flow, this mechanism is often used with
classes of flows. A class is a set that groups flows in any arbitrary way. The
number of classes can therefore be small, e.g. less than 10 (some technologies
such as MLPS use 3 bits to define priorities, so that eight classes can be defined).

2.5.1 Round robin (RR)

We assume a system in which flows or classes of flows are assigned a queue and
there is a single server. Then, round robin (RR) scan class queues serving
one from each class. There is not any kind of priority or special treatment.

23

In the following we assume that there exists a set of queues and a single server
scheduler.

2.5.2 Weighted round robin (WRR)

Weighted round robin (RR) scan class queues serving one from each class
according to the weight. There is not any kind of priority or special treatment.

Example 2.6 (Weighted round robin (WRR)) Let’s assume 4 queues with
weights {w1, w2, w3, w4}= {4, 2, 3, 2}. Then:

• first round of scheduling: packet of queues 1, 2, 3, 4;

• second round of scheduling: packet of queues 1, 2, 3, 4;

• third round of scheduling: packet of queues 1, 3;

• four round of scheduling: packet of queue 1;

• fith round of scheduling: as the first round and so on.

2.5.3 Weighted deficit round robin (WDRR)

There are models that accounts for the packet size. For example Weighted
Deficit Round Robin (WDRR) schedules packets considering the packet
length, ensuring that packets are scheduled equally. In WDRR scheduling, a
large-sized packet obtains less bandwidth than a small-sized packet.

2.5.4 Priority queueing with round robin (PQ-RR)

Priority queueing with round robin (PQ-RR) scan class queues serving
one from each class that has a non-empty queue. As can be seen in figure 9,
packets arrive at each queue, and the FIFO round robin server extracts one
packet from each queue in each round, always starting with the highest priority
queue.

24

Figure 9: Priority queueing with round robin (PQ-RR).

Example 2.7 (Priority queueing with round robin (PQ-RR)) Let’s take
figure 9.b) with transmission times of Tt=1ms, and observe the order of arrivals

with labels (1) for the red packets and label (2) for the green packets: T
(1)
1 = 0ms,

T
(1)
2 = 0.4ms, T

(1)
3 = 1ms, T

(2)
1 = 2.6ms and T

(2)
2 = 6ms. The order of departure

using PQ-RR is T
(1)
1 = 0ms, T

(1)
2 = 1ms, T

(2)
1 = 2ms, T

(1)
3 = 3ms, T

(2)
2 = 6ms.

Note than at time 0 ms there is only one packet at the red queue and nobody

at the green queue, and thus only can be scheduled packet T
(1)
1 , while at time

1ms there is one red and one green at the queues, so packets T
(1)
2 and T

(2)
1 are

scheduled for times 1ms and 2ms. At time 3ms there is only packet T
(1)
3 for

being scheduled, and at time 6ms there is only packet T
(2)
2 for being scheduled.

The PQ scheduling mechanism may result in package starvation in low-priority
queues. For example, let us assume 8 queues, with queue 7 with highest priority
and queue 0 with the lowest priority. If data flows mapped to queue 7 arrive
at a 100% link rate in a given period, the scheduler does not process flows in
queues 0 to 6.

2.5.5 Priority queueing with weighted round robin (PQ-WRR)

Priority queueing with weighted round robin (PQ-WRR) scheduling
integrates the advantages and offsets the disadvantages of both PQ scheduling
and WRR scheduling. Packets from queues with lower priorities can obtain the
bandwidth by WRR scheduling and short-delay services can be scheduled first
by PQ scheduling.

Example 2.8 (PQ-WRR) Let us assume 8 queues. Queue 7, 6 and 5 serve
packets according to PQ, while queues 4 to 0 serves packets according to a weight
in a WRR manner. That means that delay sensitive data goes to queues 7-5,
while the rest to queues 4-0. Note that the system schedules traffic in other
queues in WRR mode only after the traffic in queue 7, queue 6, and queue 5 are
scheduled.

25

In general, we can say that PQ-RR (or PQ-WRR) protects flows from misbe-
having flows that will not affect the performance of well-behaved flows; however,
they are more complex than FIFO, since, for example, in PQ-WRR it is neces-
sary to maintain one queue state per flow (or class). In addition, the service is
related to the number of packets, regardless of their size (small or large packets
count as one packet).

We can say that PQ-RR (or PQ-WRR) implements a max-min fair alloca-
tion, so, it provides some kind of fair allocation to flows or classes of flows in
the Internet.

2.6 Weighted fair queueing (WFQ)

Fair queueing (FQ) (also called processor sharing) [1] (chapter 23) is a sched-
uler that divides the capacity of the link uniformly among the flows, figure 10.
If there are n flows that traverse the link (flows that are in the queue), the ca-
pacity of the link (amount of service) given to each flow with non-empty queue
is:

gi ≥ ri =
C

n
(2.6.1)

The disadvantage of this strategy is that all flows in the queue receive the same
treatment and therefore receive the same amount of service irrespective of the
traffic profiles of the flows, the number of packets in the queue per flow, etc.

Figure 10: Fair queueing scheduling (FQ).

Weighted fair queueing (WFQ) [1] (chapter 23) is an FQ scheduler that
divides the link capacity among the flows, but instead of giving the same share
of the capacity (uniformly), it gives it according to the weights assigned to each
flow, figure 11. If there are n flows traversing the link (flows that are in the queue),
the link capacity (amount of service) given to each flow with non-empty queue
is:

gi ≥ ri =
wiC∑n
i=1 wi

(2.6.2)

As we can observe, FQ is a WFQ with equal weights in all flows. We will see in
example 2.10 that a flow i will always obtain a rate gi higher or equal than ri.

26

The reason, is that the worst case is that all flows are in the queue, and then
the flow will obtain the rate gi=ri specified by eq (2.6.2). On the other hand,
the best case will be that the flow is alone in the queue, and then gi=C.

Figure 11: Weighted fair queueing scheduling (WFQ).

Example 2.9 (Weighted fair queueing (WFQ)) Let’s assume five flows
with weights {w1, w2, w3, w4, w5}= {10, 20, 15, 25, 10}. Let us take interval
[T1, T2] in which the five flows are in the queue. Then, the flows will receive
ri =

wiC∑n
i=1 wi

b/s. It is to say {r1, r2, r3, r4, r5}= {0.125, 0.25, 0.1875, 0.3125,
0.125} of C b/s. Let us take interval [T3, T4] in which only flows f1, f3 and f4
are in the queue. Then, they will receive {r1, r3, r4}= {0.2, 0.3, 0.5} of C b/s.

2.6.1 General processor sharing (GPS)

WFQ is a scheme that is based on what is called a processor sharing scheme.
In this scheme it is assumed that flows are served in a fluid manner. A fluid
flow approach is one in which the link is assumed to be a pipe and the traffic
of each flow is a fluid that shares the pipe (i.e. the link) with other fluids (i.e.
flows), and therefore, GPS is a generalization of the WFQ. Let us explain how
this works with an example:

Example 2.10 (General processor sharing (GPS)) Let us assume a queue
with two flows and a server with capacity C=1Mbit/s. Flow 1 sends packets at
time 1 , 2 , 3 and 11ms with sizes 1000 , 1000 , 2000 and 2000 bit. Flow 2 sends
packets at time 0 , 5 , 9ms with sizes 1000 , 3000 and 2000 bit.

Now, let us see how it works with w1=w2 and w1=2 ∗ w2.

GPS Flow 1 Flow 2
Arrival time (TA, ms) 1 2 3 11 0 5 9
Packet size (*1000 bits) 1 1 2 2 3 2 2

w1=w2 Departure time (TS , ms) 3 5 9 13 5 9 11
w1=2 ∗ w2 Departure time (TS , ms) 4 5 9 13 4 8 11

Table 1: General Processor Sharing.

27

To calculate the finishing time of a packet of a given flow, we use the following
equation:

T
(k)
S (j + 1) = max{T (k)

S (j), T
(k)
A (j + 1)}+ L(k)(j + 1)

rk
(2.6.3)

where T
(k)
S (j) and T

(k)
A (j) are the departure and arrival times of packet j at flow

k; L(k)(j) is the size of packet j at flow k It is important to note that the service
rate has (and thus the departure time) to be re-calculated at each new arrival.
Let us see how the departure times are obtained for the case w1=w2, figure 12:

Figure 12: General processor sharing (GPS).

Time 0 ms: we note that r2=C, and T
(2)
S (1) = max{0, 0}+ 3000/C = 3ms.

Time 1 ms: we note that r1=C/2 and r2=C/2. The departure times are now

T
(1)
S (1)=max{0,1}+1000/(C/2) = 3 ms. The server has just send 1000 bits from

flow 2, so only 2000 bits remain to be sent (we can consider that a packet of

1000 bits has been issued), and T
(2)
S (1)=max{1,0}+2000/(C/2)= 5 ms.

Time 2 ms: packets 1 of flows 1 and 2 are being served. Packet 2 from flow 1
is queued.

Time 3 ms: packet 1 of flow 1 has just been delivered, packet 2 of flow 1 has
to be served, and packet 3 that arrives is queued. We note that r1=C/2 and

r2=C/2; T
(1)
S (2)=max{3,2}+1000/(C/2)= 5 ms. Packet 1 of flow 2 is still being

served (expected to leave at time 5 ms).

Time 4 ms: packet 2 of flow 1 is expected at time 5 ms, packet 3 of flow 1 is
in the queue, packet 1 of flow 2 is expected at time 5 ms.

28

Time 5 ms: packet 2 of flow 1 and packet 1 of flow 2 have just leaved. Arrives
packet 2 of flow 2. We calculate the departures of packet 3 of flow 1 and packet

2 of flow 2. r1=C/2 and r2=C/2. T
(1)
S (3)=max{5,3}+2000/(C/2)= 9 ms and

T
(2)
S (2)=max{5,5}+2000/(C/2)= 9 ms.

Time 9 ms: packet 3 of flow 1 and packet 3 of flow 2 have just leaved. Arrives

packet 3 of flow 2. r2=C and T
(2)
S (3)=max{9,9}+2000/(C)=11 ms.

Time 11 ms: packet 4 of flow 1 arrives and packet 3 of flow 2 have just leaved.

r1=C and T
(1)
S (4)=max{9,11}+2000/(C)=13 ms.

We leave as exercise to repeat the process for the case w1=2 ∗ w2.

2.6.2 Weighted fair queueing (WFQ): a virtual time implementation
of PGPS (Optional material)

However, GPS cannot be implemented in a real queue, as the server cannot
mix bits from different streams. A possible solution would be to implement
a general bit-by-bit processor sharing, where the server sends a bit from one
stream and then a bit from another stream. However, again, routers are not
designed to work (on a receiver basis) on a bit-by-bit basis. Routers work by
receiving packets. The solution is a packet-by-packet general processor
sharing which is the well-known weighted fair queueing (WFQ).

We will adopt the convention that a packet has arrived only after its last bit has
arrived. General packet-by-packet processor sharing, or WFQ, [5] calculates the

output time of each packet T
(k)
S (j) and serves the packets in increasing order

of time T
(k)
S . Assume now that the server becomes free in time τ . The next

packet to go out by GPS may not have arrived at time τ and, since the server
does not know when it will arrive, there is no way for the server to keep the job

and serve the packets in increasing order of T
(k)
S . The server chooses the first

packet that would complete the service in the GPS simulation if no additional
packets arrive after the τ time.

The main problem in implementing PGPS is that departure times have to be
recalculated at each flow arrival. In addition, packets are far from the same size,
and mixing bulk and real-time traffic tends to worsen the size variation. Thus,
we will use the concept of virtual time to track the progress of GPS leading to
a practical implementation of PGPS that we will call WFQ. This ”real-time”
fair queuing strategy consists of transmitting packets in order of a calculated
virtual finishing time, which benefits flows with smaller packets and flows that
have not sent packets recently. From now on, we will call packet-by-packet
general processor sharing (PGPS) as weighted fair queueing (WFQ).

For convenience, sometimes we express wi as a percentage of C.

Example 2.11 (Normalization of the weights) Let us assume that we have

29

a link of capacity C=2Mbit/s and we have 3 flows. We assign to the first flow
500 kbit/s, to the second flow 500 kbit/s and to the third flow 1Mbit/s, then
w1=0.25, w2=0.25 and w3=0.5.

Let each arrival and departure of the GPS server be denoted as an event, and let
tj , be the time at which the j-th event (e.g. a packet arrival/departure) occurs
(simultaneous events are arbitrarily ordered) [5]. Let t1= 0 be the time of the
first arrival of a busy period. Now let us observe that, for each j= 2, 3, . . . ,
the set of sessions that are busy in the interval (tj−1, tj) is fixed, and we can
denote this set as Bj . Define the virtual time V (t) as zero when the server is
idle (or the beginning of a busy period). Then V (t) evolves as:

V (0) = 0 (2.6.4)

V (tj−1 + τ) = V (tj−1) +
τ∑

k∈Bj
wk

τ ≤ tj − tj−1, j = 2, 3, . . .

Then, the rate of change of V is ∂V (tj + τ)/∂τ is 1/(
∑

k∈Bj
wk), and each

backlogged (queued) flow k receives service at rate wk∂V (tj + τ)/∂τ . Thus,
V can be interpreted as increasing at the marginal rate at which backlogged
sessions receive service.

Now suppose that the j packet of k-th flow arrives at time T
(k)
A (j); and the

packet has length L
(k)
i . Then, denote the virtual times at which this packet

begins and completes service in the simulated system as T̂
(k)
A (j) and T̂

(k)
S (j)

respectively. Defining T̂S(0)
(k) = 0 for all k, we have

T̂
(k)
A (j + 1) = max{T̂S(j)

(k), V (T
(k)
A (j + 1))} (2.6.5)

T̂
(k)
S (j + 1) = T̂

(k)
A (j + 1) +

L(k)(j + 1)

rk

Observe that T̂
(k)
S (j) give us virtual finish times that allow us to order who

leaves first in the WFQ system. However, the real finish times T
(k)
S (j) are given

by the current time plus the transmission time (i.e., quotient between the packet
sizes and the real link speed).

There are three attractive properties of the virtual time interpretation from
an implementation point of view. First, virtual time finishing times can be
determined at the arrival time of packets. Secondly, packets are served in order
of virtual time finishing time. Finally, it is only necessary to update the virtual
time when events occur in the GPS system. However, the price to pay for
these advantages is some overhead in tracking the Bj sets, which is essential in
updating the virtual time.

A natural question is how much later packets may depart the system under
PGPS relative to GPS. It is easy to proof that if TPGPS

S and TGPS
S are the

departure times for PGPS and GPS respectively, then:

TPGPS
S − TGPS

S ≤ Lmax

C
(2.6.6)

30

where Lmax is the maximum packet length and C is the capacity of the server.

The above result can easily be misinterpreted to say that the packet WFQ
discipline and the fluid GPS discipline provide almost identical service except
for a difference of one packet. Contrary to this popular (but incorrect) belief,
it has been shown that there could be large discrepancies between the services
provided by WFQ and GPS. In fact, what has been shown is that WFQ cannot
lag behind GPS by a maximum packet size. However, WFQ can be far ahead
of GPS in terms of the number of bits served for a session.

2.6.3 Class-based weighted fair queuing (CBWFQ)

Working with flows is quite difficult due to scalability issues (the number of
flows a router has to handle is huge in relation to the time needed to classify and
process the flow). The flows are then grouped into classes, which require similar
queuing treatment (i.e. have similar QoS requirements), using precedence bits
to classify the classes. WFQ is then applied in a per-class queue management
system where the weight is applied to the classes and not to the flows. This
scheme is called class-based weighted fair queuing (CBWFQ).

Figure 13: Class-based weighted fair queuing (CBWFQ).

The simplest hierarchy is that flows belonging to the same class are scheduled
FIFO, while class packets are scheduled WFQ, figure 13. However, more com-
plex schemes can be envisaged. For example, to ensure fairness between flows
of the same class, a per-flow scheduling scheme (e.g. FQ) can be applied to
each class. Over time, this will create a hierarchy of scheduling schemes that
will determine how the bandwidth of a link is shared, first between higher level
classes, then between flows of the same class, or second level (sub)classes of the
same higher level class, and so on.

31

Figure 14: Low latency queueing (LLQ).

2.6.4 Low latency queueing (LLQ)

The low latency queueing (LLQ) feature brings strict priority queuing (PQ)
to CBWFQ which reduces jitter in voice conversations. Without LLQ, CBWFQ
provides WFQ based on defined classes with no strict priority queue available for
real-time traffic. Thus, traffic that is delay sensitive such as VoIP, are assigned
to a priority queue that is served before the CBWFQ classes, figure 14.

3 Traffic shaping and policing

If in fair queue allocation (FQ/WFQ) a sender is idle, the fair queues distribute
that sender’s bandwidth among the other senders. The purpose of token bucket
mechanisms is to monitor bandwidth, so the bandwidth allocated to a sender is
the bandwidth it receives.

Example 3.1 (Allocation with FQ) Let us assume a link with capacity 1
Gbit/s and packet sizes of 1000 bit, and a connection, let us call it A, to which
we allocate 25% of the link (i.e., 0.25Gbit/s). Since, user A is only paying
for this rate of 0.25Gbit/s, we do not want that this connection uses more
than 0.25Gbit/s. Using a WFQ, when the queue is idle and not other users are
sending packets, user A gets 1Gbit/s. What happens if user A makes use of this
knowledge and sends traffic at higher rate than the stipulated rate of 0.25Gbit/s.

We could use the following strategy: knowing that the transmission time of the
link for 1 packet is TC=103/109=1 µs, we could wait 3 µs after a packet of user
A is sent, so the user is receiving a 25% share of the link (1 of every 4 µs).

32

However, it can happen that a packet of user A is expected at T= 12 µs and
arrives at 13 µs, and the following packet arrives at 16 µs. What happen with
this last packet? Do we send it? It has arrived at time but the gap with the
previous packet is not what it should be since there are 3 µs of inter-packet gap
instead of 4 µs (jitter is producing this effect).

The solution is a token bucket specification which allows for specification of
both an average rate and also a burst capacity. The implemented token-bucket
specification is often called a token-bucket filter. If a packet does not meet
the token-bucket specification, it is non-compliant and we can follow one of
these actions:

• drop the packet (called policing) when the traffic reaches its maximum
excess traffic. Bursts are propagated and it does not need to queue packets.
It is applied to inbound traffic;

• delay the packet (called shaping) until the bucket is ready. Shaping
mechanisms queue packets and schedule these packets for later retransmis-
sion with the objective of smoothing the traffic. It is applied to outbound
traffic and it works in conjunction with schedulers such as PQ, WFQ,
CBWFQ, etc;

• mark the packet as non-compliant. The marked packets are sent at lower
priority, and are dropped by some downstream router if this is congested.

Figure 15: Traffic shaping and policing.

33

3.1 Token/Leaky bucket algorithms

We define a system with a bucket capacity (bucket depth) of Bmax tokens
(e.g., bytes or packets). To send a packet, we need to be able to take a to-
ken from the bucket; if the bucket is empty, the packet does not qualify and
must receive special treatment as described above (discard, delay, or mark the
packet). However, if the bucket is full, the sender can send a burst of packets
corresponding to the capacity of the bucket (at which point the bucket will be
empty). The bucket is refilled with a token fill rate of ρ bit/s.

Then, we will call TB(ρ, Bmax) the token specification. We will call B(t) the
capacity of the bucket at time t. Then, when a packet arrives, if B≥1, the
packet is transmitted and B=B-1. If B=0, then the packet is non-compliant
and receives a treatment (drop, delay or mark the packet).

The fluid-flow equivalence is called the leaky bucket mechanism. In the leaky
bucket mechanism, the bucket capacity is measured in bytes and not in tokens
(or packets), thus allowing arbitrary sized packets to arrive. Whenever a packet
of size L Byte arrives in the system, the packet is transmitted if B≥L.

If Si(τ , t) is the amount (in Bytes) of session i flow that leaves the leaky bucket
in the interval (τ , t) with token bucket specification LB(ρi, Bi), then:

Si(τ, t) ≤ Bi + (t− τ)ρi (3.1.1)

Example 3.2 (Simple leaky bucket example) Let us take an example with
a link with capacity C=1Mbit/s with packet size L= 1000 bits. The transmission
time is Tt=1ms. Let us assume that a user has LB(ρi, Bi)= (0.1Mbit/s, 1000
Bytes). Then, every ms, the bucket is filled with (t− τ) ∗ ρi= 1 ms ∗ 0.1 Mb/s
= 100 bits. Thus, the user will be able to send a packet every 10 transmission
times, in which the bucket size will reach 1000 bits (1 packet).

It is possible to limit the maximum delay and queue length (for session i) if the
connection is leaky bucket controlled [5]:

Dmax
i ≤ Bi

ρi
(3.1.2)

Qmax
i ≤ Bi (3.1.3)

There is a slightly difference between a leaky bucket and a token bucket filter. In
the leaky bucket, when the host has to send a packet, the packet is introduced
in the bucket, the bucket leaks at constant rate, meaning that packets leaves
the system at the leaky rate. If the bucket is full, the packet is discarded. In the
token bucket, tokens are generated at regular intervals of time (at the token
rate), if there is a packet ready, a token is removed from bucket and the packet

34

is send. If there is a no token in the bucket, the packet can not be send and
waits until there is a token ready.

The leaky bucket provides fairness and stability to users and creates a pre-
dictable and constant rate of packets, but does not allow the user to make full
use of their bandwidth (send bursts of traffic). On the other hand, the token
bucket allows bursts of packets to be sent until the bucket is empty, which pro-
vides great flexibility and responsiveness to the user. However, this can cause
unfairness and lack of quality of service to other users who are not as bursty
(starvation) and can be exploited by malicious or greedy clients.

Example 3.3 (Token bucket) Let us assume a bucket specification of TB(1/3
packets/ms, 3 packets), and a connection that sends packets (same size with Tt=
1 ms) at times Ti= 0, 1, 2, 3, 4, 6, 7, 8, 10 ms. Let’s see which packets are
compliant and which ones are not compliant, table 2. We increase the bucket
size if arrives a token before decreasing the bucket and checking the compliance
of the packet.

Time (ms) 0 1 2 3 4 5 6 7 8 9 10
Packet ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
arrival
B− 3 2 1

3 1 2
3 1 0 1

3 0 2
3 1 0 1

3 0 2
3 1 1 1

3

B+ 2 1 1
3 0 2

3 0 0 1
3 0 2

3 0 0 1
3 0 2

3 1 0 1
3

Packet ✓ ✓ ✓ ✓ x ✓ x x ✓
compliance

Table 2: Token bucket TB(r, Bmax)= TB(1/3 packets/ms, 3 packets), symbol
B− means bucket size before packet arrival and B+ means bucket size after
packet compliance checking.

3.2 Traffic parameters

• CIR (committed information rate): represents the average data rate
(bit/s) associated to a service or flow (not an instantaneous data rate);

• EIR (excess information rate): average data rate (bit/s) in excess with
respect CIR. Sometimes it is specified as the PIR (peak information
rate), and PIR=CIR+EIR. But EIR=PIR-CIR, so we can see EIR as an
excess;

• CBS (committed burst size): size in Bytes of the transmitted infor-
mation. Then, the CBS is the amount of bytes that can be sent over a
period of time T when congestion occurs. Normally is the packet size,
e.g., in Internet if the packet size is 1500B, then CBS=1500B;

• EBS (excess burst size): excess in size in Bytes of the transmitted
information. Amount of extra bytes that can sent over the time T that

35

still remain conformant with the CIR and EIR. If EBS>0, then you can
send traffic exceeding the CIR.

Figure 16: Traffic parameters example.

Example 3.4 (Traffic parameters) Let us take an example with a link with
capacity C=1Gbit/s with packet size L=1500 Bytes. The transmission time is
Tt=

L
C= 1.5 µs. Let us assume that the flow sends with a traffic profile of 1

packet every 3.0 µs, figure 16.a). It is easy to check that the CIR=0.5Gbit/s,
CBS=1500B (1 packet) and EBS=0.

Let us consider the traffic profile of figure 16.b), where the flow sends two
packets back-to-back every 6.0 µs. We can easily see that the CIR=0.5Gbit/s,
CBS=1500B (1 packet), EIR>0 and EBS>0.

Let us consider the traffic profile of figure 16.c), where the flow sends three
packets back-to-back every 9.0 µs. We can easily see that the CIR= 0.5Gbit/s,
CBS= 1500B, EIR>0 and EBS>0.

Finally, let us consider the traffic profile of figure 16.d), where the flow sends
two packets back-to-back and from time to time three packets back-to-back. We
can easily see that the CIR=0.5Gbit/s, CBS=1500B, EIR>0 and EBS>0.

We can see that in the four cases, the flow sends packets with a CIR of 0.5Gbit/s
and a CBS of 1500B. However, the impact these traffic profiles have on a router
is different. Suppose we have two such flows arriving at a router, each on a
different link, and both flows leave on the same outgoing link. All links are with
the same capacity of C=1Gbit/s. Let us also assume that both incoming flows
are synchronised (packets arrive in the same slot). What is the buffer occupancy
in each case? We can observe, figure 17, that although cases a), b) and c) have
the same CIR and same CBS, they produce different bursts of packets (different
EBS) and thus, have a different impact on the number of packets that the router
has to buffer.

36

Figure 17: Queue size impact example.

Example 3.5 (Dual Leaky bucket) Let us assume a system in which we
want to control the mean rate (CIR) and the peak rate (PIR). Let p=PIR and
r=CIR. We define a bucket specification for the peak rate TB1(p, CBS), and
a second bucket specification for the mean rate TB(ρ, EBS), where CBS is the
maximum packet size and EBS=B (the bucket size). Under these conditions,
the allowed number of bytes in the system in the interval (0,t) is:

S(0, t) ≤ p× t+ CBS (3.2.1)

S(0, t) ≤ ρ× t+ EBS

Example 3.6 (A single rate three color marker - RFC2697 (optional
material)) Also called srTCM meter. The srTCM meters an IP packet stream
and marks its packets either green, yellow, or red. Marking is based on CIR
(measured in bytes of IP packets per second, including IP headers), CBS (mea-
sured in bytes) and EBS (measured in bytes) parameters. A packet is marked
green if it doesn’t exceed the CBS, yellow if it does exceed the CBS, but not the
EBS, and red otherwise. The srTCM is useful, for example, for ingress policing
of a service, where only the length, not the peak rate, of the burst determines
service eligibility.

The CBS and EBS must be configured so that at least one of them is larger than
0. It is recommended that when the value of the CBS or the EBS is larger than
0, it is larger than or equal to the size of the largest possible IP packet in the
stream. There are 2 token buckets: TBC(CIR, CBS) and TBE(CIR, EBS).

The meter operates in one of two modes. In the color-blind mode, the meter
assumes that the packet stream is uncolored. In the color-aware mode the
meter assumes that some preceding entity has pre-colored the incoming packet
stream so that each packet is either green, yellow, or red.

37

When a packet of size L bytes arrives at time t, the following happens if the
srTCM is configured to operate in the color-blind mode:

• if TBC(t)-L≥0, the packet is green and TBC is decremented by L down to
the minimum value of 0, else;

• if TBE(t)-L≥0, the packets is yellow and TBE is decremented by L down
to the minimum value of 0, else;

• the packet is red and neither TBC nor TBE is decremented.

When a packet of size L bytes arrives at time t, the following happens if the
srTCM is configured to operate in the color-aware mode:

• If the packet has been precolored as green and TBC(t)-L≥0, the packet is
green and TBC is decremented by L down to the minimum value of 0, else;

• If the packet has been precolored as green or yellow and if TBE(t)-L≥0,
the packets is yellow and TBE is decremented by L down to the minimum
value of 0, else;

• the packet is red and neither TBC nor TBE is decremented.

The srTCM can be used to mark a packet stream in a service, where different,
decreasing levels of assurances (either absolute or relative) are given to pack-
ets which are green, yellow, or red. For example, a service may discard all red
packets, because they exceeded both the committed and excess burst sizes, for-
ward yellow packets as best effort, and forward green packets with a low drop
probability.

3.3 Leaky bucket algorithm with GPS scheduler

Let us assume a router with a GPS scheduler and a leaky bucket algorithm that
controls the traffic entrance, figure 18. Each connection i is assured a rate ri≤C
by the GPS, and the leaky bucket specification for connection i is LB(ρi,Bi),
with ri ≥ ρi. The constraint in amount of bytes imposed by the leaky bucket is
as follows.

We define as Ai(τ , t) the amount (in bits or Bytes) of session i flow that enters
the system and is queued (in a large enough buffer), and Si(τ , t) as the amount
(in bits or Bytes) of session i flow that leaves the leaky bucket plus GPS system
and enters the network in time interval (τ ,t]. Let Bi and ρi be the bucket size
and bucket rate of the leaky bucket, and ri be the GPS share of the link capacity
C (i.e., ri≤pi, with pi the peak rate) , then we say that Ai conforms to (Bi, ρi,
ri) or Ai ∼(Bi, ρi, ri) and:

Si(τ, t) ≤ min{(t− τ)ri, Bi + (t− τ)ρi} (3.3.1)

38

This model is similar to the dual leaky bucket eq (3.2.1), in which the peak
and mean rate of the connection is controlled. The difference is that here the
capacity of the link is shared with other connections.

Figure 18: Leaky bucket architecture.

Example 3.7 (A greedy connection) A greedy connection (pi→∞) that
tries to transmit as many packets as possible, will consume the bucket at rate ri
(its peak rate), and then it will be limited by the bucket rate ρi, it is to say, it
will transmit packets at this average rate ρi.

Example 3.8 (A typical configuration for controlling a connection)
A typical configuration is one in which ρi=CIRi, ri=PIRi and Bi=EBSi, and
the maximum packet size is the CBS. The connection transmits with pi≤PIR.
When the connection transmits at its peak rate, consumes bytes from the bucket.
When the connection slows down to values lower to the CIR, the bucket is re-
plenished, and in average the source transmits at CIR. The maximum that the
source can transmit at PIR is the EBS (a burst of packets of size CBS).

Example 3.9 (Limit of packets in leaky bucket filter) Let us take example
3.3 and assume a ri= 1 packet/ms, and calculate the maximum amount of traffic
allowed in the leaky bucket filter plus GPS system in a period of 10 ms; it is
to say Ai ∼(Bi, ρi, ri)= (3 packets, 1/3 packet/ms, 1 packet/ms). Using eq
(3.3.1), we get that:

Si(τ, t) ≤ min{10ms ∗ 1 packets/ms, 3 packets+ 1/3 packets/ms ∗ 10ms}
≤ min{10, 3 + 10/3}
≤ min{10, 19/3}
≤ (6 + 1/3) packets.

39

Other metrics are the delay and queue length. The delay and the queue length
at time τ , figure 19 are given by [5]:

Di(τ) = inf{t ≥ τ ;Si(0, t) = Ai(0, τ)} − τ = t∗ − τ (3.3.2)

Qi(τ) = Ai(0, τ)− Si(0, τ) (3.3.3)

We can observe that to calculate the delay, we have to calculate the time t∗ in
which the input traffic at time τ will leave the system. This time is the one that
makes Si(0, t

∗) = Ai(0, τ).

Figure 19: Leaky bucket input (Ai(0,t)), output (Si(0,t)), queue length (Qi(t))
and delay (Di(t)).

It is possible to find bounds on the maximum delay that a connection will get
if it is leaky bucket controlled and a GPS scheduler is used. If the connection
is greedy and p→∞ (it is to say, p≥C), then the delay is as in eq (3.1.2):

Di ≤
bi
ρi

(3.3.4)

However, if the connection transmit at a given peak rate (it is to say, pi≥ri≥ρi
and C≥ri), then:

Di ≤
bi

(pi − ρi)

(pi − ri)

ri
(3.3.5)

Finally, we have a third delay boundary for the case of a route path [6], where all
routers control the connection with a leaky bucket and a WFQ (i.e. all routers
are Ai ∼(Bi, ρi, ri) conformant). Assuming that the path has K routers, and
the maximum packet size is Lmax, and the connection is greedy (pi≥ri) then:

Di ≤
bi
ρi

+
(K − 1)Lmax

ρi
+

K∑
j=1

Lmax

Cj
(3.3.6)

where, Cj is the link rate for router j=1, . . . , K.

40

4 QoS models

We can consider three models or architectures to send QoS traffic: best effort,
integrated services and differentiated services, figure 20.

Figure 20: QoS models.

4.1 Best effort

The first so-called best effort cannot be considered a QoS model at all, as
it does not apply or configure any kind of QoS mechanism. Internet routers
do not provide any kind of traffic guarantee, and all packets are treated in the
same way. It usually uses a FIFO scheduler. It has the benefits of being the
most scalable, and it is the easiest and quickest method to implement. It has
the disadvantage that it does not guarantee delivery and packets will arrive
whenever possible and in any order, if at all. No packet has special treatment,
and critical packets (e.g. delay-sensitive packets) receive the same treatment as
non-critical packets.

4.2 Integrated services (IntServ)

Integrated services (IntServ) provides a way to deliver end-to-end Qos that
real-time applications require by explicitly managing network resources to pro-
vide QoS to specific user packet streams (flows). These flows are characterized
by a 5-tuple: source IP address (4B), destination IP address (4B), source L4
port (2B), destination L4 port (2B), type of L4 protocol (1B), figure 21.

41

Figure 21: Flow classification.

IntServ is a mechanisms that is connection-oriented (inherit from telephony
network design). That means that a flow (or connection) request and reserves
hard QoS along the path between source and destination. If some of the routers
is not able to provide the QoS requested, the connection is not accepted. The
main mechanisms to provide this hard QoS are resource reservation protocols
and an admission-control mechanism. In the IntServ model:

• the application requests a specific kind of service from the network before
sending the data;

• the application informs the network of its traffic profile and requests a
particular kind of service that can encompass its bandwidth and delay
requirements;

• IntServ uses the Resource Reservation Protocol (RSVP) to signal the
QoS needs of an application’s traffic along devices in the end-to-end path
through the network. Note that in the case of the reserved resources, these
are only used by the requester and are isolated from other traffic;

• if the network devices along the path can reserve the necessary bandwidth,
the originating application can begin transmitting – otherwise, no data is
sent.

The main drawback on IntServ is that the network (each router) has to maintain
per-flow state and support RSVP, admission control, packet classification based
on multiple fields of the IP header, and scheduling. The major difficulty lies in
the processing capacity of the routers. The higher the switching capacity of the
router (and the higher the speed of the link capacity), the less time the router
has to inspect and classify the packets figure 22. In a network with millions of
flows, this time may be longer than the switching time of an L3 packet (in the
order on ns). This scalability issue is the main drawback of IntServ.

42

Figure 22: IntServ scalability issues.

If every T seconds, an active flow generates a RSVP message, then the router
control plane has to process L×N/T packets/second, where L is the number of
links of the router and N is the number of flows per interface.

Example 4.1 (IntServ scalability issues) Let us assume a router that has
L=16 interfaces, with N= 2 million of packets, and RSVP generates a new
reservation every T= 180 s. Then, every 5.625 µs the router control plane has
to process a RSVP packet.

4.3 Differentiated services (DiffServ)

The solution to the scalability problem posed by IntServ is to aggregate traffic
(flows) into classes. Classes are identified using 6 bits called differentiated
service code point (DSCP) (6 bits) in the type of service (ToS) field (now
called differentiated service (8 bits) field) of the IP header. In this context,
service level agreements (SLAs) concern aggregate traffic of the same class and
not individual flows. The SLA will specify traffic and QoS characteristics such
as token bucket parameters, throughput, delays, losses ratios, priorities, etc (in
a per class service).

Example 4.2 (DiffServ class definition) Let us define a SLA for a class
called ”VoIP”. The Service Provider ISP and the client have the following
agreement:

• an ingress committed rate (ICR) and a egress committed rate (ECR) are
defined. These are the maximum ingress/egress bandwidth for ingress and

43

egress traffic for flows in this class. Normally, the traffic will be simetric,
so ICR=ECR;

• as a policy function a Token-Bucket filter will be used with a bucket rate
(r) and burst size (B);

• in order to have a conforming traffic to the Token-Bucket parameters, the
ISP guarantees a maximum delay per each direction (i.e., 15 and 30 ms),
and a loss ratio (i.e., 0.1 %).

A service is a concept associated with the business of an ISP/operator. The
characterisation of the service includes concepts such as performance (losses,
delays, etc.), prices, pricing methods, how the service is used, etc. These con-
tracts are long-term (i.e. static) and are not renegotiated when the connection
is established. The same service can be offered with different technical solutions
(e.g. different per hop behaviour, PHB).

Delay/loss guarantees are obtained through network dimensioning and plan-
ning and not through the reservation of resources. The guarantees do not give
maximum delay/loss values, but probable values. DiffServ is not an end-to-end
architecture. It is defined in a carrier/ISP network. So the market penetration
of a specific service will be incremental.

There are two types of nodes, with different responsibilities. Core routers used
for intra-connectivity within an administrative domain, and access routers that
connect administrative domains to corporate networks or other ISPs.

Access routers has the responsibility of classifying and marking packets in
one of the defined forwarding classes. That means that when a packet enters a
domain (ISP), it is marked with a DSCP identifier (6 bits), figure 23. Each of
the defined classes are called forwarding class.

Figure 23: Differentiated service code point (DSCP).

The access router performs the following functionalities, figure 24:

44

Figure 24: DiffServ access router functionalities.

• classification: selects a packet in a traffic stream based on the content
of some portion of the packet header;

• meter: checks compliance to traffic parameters (i.e., token bucket) and
passes results to the marker and shaper/dropper to trigger action for
in/out-of-profile packets;

• marker: writes/rewrites the DSCP value

• shaper/droper: delays (or drops) some packets to be compliant with
the profile.

The core routers, on the other hand, treat each packet differently depending
on the DSCP in the IP header. This treatment is referred to as per hop
behaviour (PHB).

Thus, the most expensive functions are implemented at the edge of the network,
while in the core network the routers only have to treat the packets differently
depending on a small number of classes, as the DSCP field is only 6 bits long
(for a maximum of 64 classes). However, the standards recommends four PHB
types:

• Default Forwarding (DF) PH: the default PHB essentially specifies
that a packet marked with a DSCP value of 000000 (recommended) re-
ceives the traditional best-effort service from a DS-compliant node (that
is, a network node that complies with all of the core DiffServ require-
ments). Also, if a packet arrives at a DS-compliant node, and the DSCP
value is not mapped to any other PHB, the packet will get mapped to the
default PHB.

• Class Selector PHBs: to preserve backward-compatibility with any
IP precedence scheme currently in use on the network, DiffServ has de-
fined a DSCP value in the form xxx000, where x is either 0 or 1. These
Class-Selector PHBs ensure that DS-compliant nodes can coexist with IP
precedence-based nodes (where the first theee bits of the ToS IP header
field were used).

45

Example 4.3 (PBH backward-compatibility) Let us define packets
with a DSCP value of 11000 (the equivalent of the IP precedence-based
value of 110) have preferential forwarding treatment (for scheduling, queue-
ing, and so on), as compared to packets with a DSCP value of 100000 (the
equivalent of the IP precedence-based value of 100).

• Expedited Forwarding (EF) PHB: dedicated to low-loss, low-latency
traffic. The recommended DSCP for EF is 101110 (value 46).

• Assured Forwarding (AF) PHB: gives assurance of delivery under
prescribed conditions. The AF PHB defines four AF classes: AF1, AF2,
AF3, and AF4. Each class is assigned a specific amount of buffer space
and interface bandwidth, according to the SLA with the service provider
or policy map. Traffic in the higher class (class 4) is given priority if
congestion occurs between classes. Within each AF class, you can specify
three drop precedence (dP) values, dP=1 for low drop precedence,
dP=2 for medium drop precedence, and dP=3 for high drop precedence
(where higher precedence means more dropping), figure 25.

Figure 25: DiffServ access AF classes and dropping priorities. Class 4 has the
highest priority in the queue.

An AFx class can be denoted by the DSCP value, xyzab0, where xyz
can be 001, 010, 011, or 100, and ab represents the dP value.

A good way to remember the AF assurances is to remember AFnm, with
n=1, . . . , 4 (1=worst, 4=best) queue, and m=1, . . . , 4 (1=low, 3=high)
dropping priority. Thus AF41 (DSCP=34) is the best queue with best
(lowest) dropping priority, and AF13 (DSCP=14) is the worst queue with
worst (highest) dropping priority.

Example 4.4 (Expedited Forwarding (EF) PHB) In instances of network
traffic congestion, if packets in a particular AF class (for example, AF1) need
to be dropped, packets in the AF1 class will be dropped according to the following
guideline:

dP (AFna) ≥ dP (AFnb) ≥ dP (AFnc) (4.3.1)

46

For example, for class n=1 (AF1), we would have three sub-classes, AF11 (low
drop precedence), AF12 (medium drop precedence) and AF13 (high drop prece-
dence). The DSCP values would be: 001010 (AF11), 001100 (AF12)), and
001110 (AF13)).

For class n=2 (AF2), we would have three sub-classes, AF21 (low drop prece-
dence), AF22 (medium drop precedence) and AF23 (high drop precedence). The
DSCP values would be: 010010 (AF21), 010100 (AF22)), and 010110 (AF23)),
and so on for AF3 and AF4.

Example 4.5 (Precedence compatibility) To be compatible with the old
precedence bits, (first 3 bits of the octect ToS of the IP header, RFC791), Diff-
Serv, defines the following services:

• 00000000 DSCP=0 (CS0): compatible with the ”best effort” precedence
class;

• 00100000 DSCP=8 (CS1): compatible with the ”priority” precedence class;

• 01000000 DSCP=16 (CS2): compatible with the ”routine” precedence
class;

• 01100000 DSCP=24 (CS3): compatible with the ”flash” (video or voice
signaling) precedence class;

• 10000000 DSCP=32 (CS4): compatible with the ”flash override” prece-
dence class;

• 10100000 DSCP=40 (CS5): compatible with the ”critical” (vocie RTP)
precedence class;

• 11000000 DSCP=48 (CS6): compatible with the ”Internet” precedence
class;

• 11100000 DSCP=56 (CS7): compatible with the ”network” precedence
class.

Example 4.6 (DiffServ design) Traffic classes along with the SLAs for each
traffic class in use on the sample DiffServ implementation are described as fol-
lows:

• Voice is considered premium class. The gold class of traffic consists of
TACACS sessions. The silver traffic class consists of SSH, Simple Main
Transfer Protocol (SMTP), and FTP sessions. The bronze traffic class
consists of web traffic. Anything else is considered as belonging to the
”best-effort” traffic class;

47

• The premium class should be forwarded with the lowest delay possible up
to a maximum of 500 kbit/s during periods of congestion. The gold class
should be treated preferentially over the silver class, which in turn should
be treated preferentially over the bronze class. The gold, silver, and bronze
classes should have 35%, 25%, and 15%, respectively, of the interface band-
width as the minimum bandwidth guarantees. The bronze class should be
shaped to 320 kbit/s, and the best-effort class should be policed to 56 kbit/s;

• To provision for the various traffic classes, the traffic needs to be classi-
fied based on DSCP values in a DiffServ domain. So that traffic can be
classified based on DSCP values, the traffic should be premarked with the
appropriate DSCP values at the time of entering the network.

An example of DSCP marking would be:

• Premium (voice): a DSCP=46, that in binary is 000110. This corresponds
with a EF (Expedited Forwarding) class;

• Gold (TACACS): a DSCP=10, that in binary is 001010. This corresponds
with a AF (Assured Forwarding) class of type AF11;

• Silver (SSH): a DSCP=18, that in binary is 010010. This corresponds
with a AF (Assured Forwarding) class of type AF21;

• Silver (SMTP): a DSCP=20, that in binary is 010100. This corresponds
with a AF (Assured Forwarding) class of type AF22;

• Silver (SSH): a DSCP=22, that in binary is 010110. This corresponds
with a AF (Assured Forwarding) class of type AF23;

• Bronze (HTTP): a DSCP=26, that in binary is 011010. This corresponds
with a AF (Assured Forwarding) class of type AF31;

• Best effort: a DSCP=0, that in binary is 000000.

References

[1] Peter Lars Dordal. An introduction to computer networks. Loyola University
Chicago, 2014.

[2] Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on networking, 1(4):397–413,
1993.

[3] Van Jacobson, Kathy Nichols, Kedar Poduri, et al. Red in a different light.
Draft, Cisco Systems, 1999.

48

[4] George Ou. Managing broadband networks: a policymaker’s guide. ITIF,
December, 2008.

[5] Abhay K Parekh and Robert G Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case. IEEE/ACM transactions on networking, 1(3):344–357, 1993.

[6] Abhay K Parekh and Robert G Gallager. A generalized processor sharing
approach to flow control in integrated services networks: The multiple node
case. IEEE/ACM transactions on networking, 2(2):137–150, 1994.

[7] John Soldatos, Evangelos Vayias, and George Kormentzas. On the building
blocks of quality of service in heterogeneous ip networks. IEEE Communi-
cations Surveys & Tutorials, 7(1):69–88, 2005.

49

	Quality of Service in Internet protocols and networks
	QoS definition
	QoS in network architectures
	Static and dynamic bandwidth allocation
	QoS parameters
	Types of traffic
	End-to-end QoS levels (service models)

	Queueing management
	Explaining congestion in the queue
	Queueing scheduling disciplines
	First-in-first-out (FIFO) + drop-tail
	Random early detection (RED)
	Explicit congestion notification (ECN)

	Resource allocation in computer networks
	Uniform fair allocation
	Maximum throughput allocation
	Max-min fair allocation
	Proportionally fair allocation

	Queueing service stratgies
	Round robin (RR)
	Weighted round robin (WRR)
	Weighted deficit round robin (WDRR)
	Priority queueing with round robin (PQ-RR)
	Priority queueing with weighted round robin (PQ-WRR)

	Weighted fair queueing (WFQ)
	General processor sharing (GPS)
	Weighted fair queueing (WFQ): a virtual time implementation of PGPS (Optional material)
	Class-based weighted fair queuing (CBWFQ)
	Low latency queueing (LLQ)

	Traffic shaping and policing
	Token/Leaky bucket algorithms
	Traffic parameters
	Leaky bucket algorithm with GPS scheduler

	QoS models
	Best effort
	Integrated services (IntServ)
	Differentiated services (DiffServ)

