STRONGEST

STRONGEST – Scalable, Tunable and Resilient Optical Networks Guaranteeing Extremely-high Speed Transport
(FP7-247674)
January 2010 – December 2012
Role: Technical Contributor

STRONGEST’s main goal is to design and demonstrate an evolutionary ultra-high capacity multilayer transport network, based on optimized integration of optical and packet nodes, and equipped with a multi-domain, multi-technology control plane, overcoming the problems of current networks that still provide limited scalability, are not cost-effective and do not properly guarantee end-to-end quality of service. STRONGEST is an industry led project; the consortium brings together major European industrial players, leading Telecom operators, Universities and Research Centres and as such, it enables the necessary synergies and creates an ideal environment for innovation and development. The European scale of the project is made necessary by the development of a new reality in which countries and federations are immensely and inextricably linked. To have a common view at European level is essential to apply the project’s outcomes. A major impact from STRONGEST will be to strengthen the position of European industry in the field of Future Internet and to reinforce European leadership in optical networks technologies. The design of a more efficient transport network with reduced cost per bit and the particular attention to energy efficiency will turn into benefit to the entire Community. Network Operators have a tough target to reduce CO2 emissions, whilst at the same time supporting significantly higher information bandwidth. They will use the results of STRONGEST, which will provide the optimum transport network architecture to achieve these targets. STRONGEST results will be exploited by Vendors to develop traffic engineering solutions running in multi-technologies and multi-domain context, and the related control plane in both legacy nodes and new optical/packet nodes. Academic Partners plan to use the STRONGEST results for further enhancement of knowledge transfer, and training and skills creation in the field of telecommunication networks, particularly in the field of optical networks.

ETRI 2010

J. Perelló, G. Hernandez-Sola, F. Agraz, S. Spadaro, J. Comellas, “On the scalability of the path computation flooding approach in PCE-based multi-domain networks”, ETRI Journal, vol. 32, nº. 4, pp. 622-625, 2010.