SLICENET

SLICENET – End-to-End Cognitive Network Slicing and Slice Management Framework in Virtualised Multi-Domain, Multi-Tenant 5G Networks
H2020-ICT-2016-2
761913
June 2017 – may 2020
Role: Technical Coordinator for UPC

5G use cases are so diverse and challenging that the 5G networks must be customisable for the broad range of individual scenarios. 5G network providers are keen to offer “networks as a service” where logical network slices are created and allocated to use cases flexibly and efficiently in a multi-operator environment. SliceNet will create and demonstrate the tools and mechanisms to achieve this ambition. Specifically, SliceNet will design, prototype and demonstrate an innovative, verticals-oriented, QoE-driven 5G network slicing framework. It will use cognitive network management, control and orchestration techniques for the provision and operation of end-to-end slicing across multi-operator domains in 5G networks. SliceNet will systematically tackle a range of the involved outstanding issues and thus directly addresses the key challenges in Strand 3 “Software Network” in this call ICT-07-2017. The integrated SliceNet framework will be demonstrated in three representative vertical use cases: Smart Grid, eHealth and Smart City, to highlight the achievements, innovations, and impacts. SliceNet support the unique perspectives and requirements on 5G networks of different players: For 5G verticals businesses, SliceNet offers an innovative one-stop shop solution to meet diverging and demanding service requirements. SliceNet enables the verticals to plug and play their use cases with bespoke control to employ 5G slices in a scalable, cost-efficient way via novel mySlice and Scalable Slicing as a Service functions and a one-stop API. For 5G service providers and users, SliceNet provides unprecedented guaranteed service quality by agile cognitive QoE-optimisation of service creation and delivery. For 5G network operators, SliceNet presents an integrated FCAPS (Fault, Configuration, Accounting, Performance, Security) framework for truly end-to-end management, control and orchestration of slices by secured, interoperable, and reliable operations across multi-operator domains.

ELASTIC

ELASTIC – Enhanced opticaL networks featuring Adaptable and highly Scalable multi-granular Transport servICes
(TEC2011-27310)
January 2012 – December 2014
Role: Technical Coordinator

In the years to come, network operators will unavoidably be faced with the challenge of designing highly flexible optical networks that efficiently transport a wide range of data-centric applications with diverse characteristics and requirements. It is therefore critical to start laying the foundations of advanced network architectures taking full advantage of cutting-edge optical switching and transmission technologies in order to seamlessly cope with today‘s and tomorrow‘s applications needs. In the light of the described scenario, the ELASTIC project will pursuit the design and assessment of novel network architectures offering multi-service provisioning features as well as to effectively respond to a variety of upper layer application requirements.

LIGHTNESS

LIGHTNESS – Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects
(FP7-318606)
November 2012 – October 2015
Role: Technical Coordinator for UPC

The main objective of the LIGHTNESS project is the design, implementation and experimental evaluation of a high-performance network infrastructure for data centres, where innovative photonic switching and transmission solutions are deployed. Harnessing the power of optics will enable data centres to effectively cope with the unprecedented demand growth to be faced in the near future, which will be driven by the increasing popularity of computing and storage server-side applications in the society. Indeed, the deployment of optical transmission systems leveraging Dense Wavelength Division Multiplexing (DWDM) allows the transmission of more than a hundred of wavelength channels operating at 10, 40, 100 Gb/s and beyond. This effectively results in “unlimited” bandwidth capacities of multiple Terabit/s per fibre link, which can be efficiently utilized through next-generation all-optical switching paradigms like Optical Circuit Switching (OCS) or Optical Packet Switching (OPS).

FIBRE

FIBRE – Future Internet Testbeds Experimentation between Brazil and Europe
(FP7-288356)
November 2011 – March 2014
Role: Technical Coordinator for the Optical Communications group of UPC

FIBRE is about building and operating a federated large-scale experimental Future Internet facility distributed between Brazil and Europe, to foster the generation of new Brazilian-European partnerships that innovate in Future Internet infrastructure and applications. This overall goal can be broken down into the following objectives:
– Build a shared large-scale experimental facility that enables experimentation on network infrastructure and distributed applications, consisting in a new testbed in Brazil and an enhancement of the FP7 OFELIA facility – currently under development – and the basic wireless facility of FP7 OneLab, the UTH NITOS testbed, both in Europe.
– Federate the Brazilian and European facilities, to allow researchers to use resources of both testbeds in the same experiment.
– Showcase the potential of the facility by demonstrating experimental network-enabled applications deployed on top of the federated facilities resources.
– Enhance the collaboration and exchange of knowledge between European and Brazilian researchers in the field of Future Internet.

FIERRO

FIERRO – Future Internet: Eficiencia en las redes de altas prestaciones
(TEC2010-12250-E)
May 2011 – September 2012
Role: Technical Coordinator for Optical Communications group of UPC

The mismatches in the design objectives between the original and the future Internet avoid its widespread deployment at the expected scales. The challenges with regard to the high-performance IP (metro and core) network infrastructure involve all the layers: physical layer and switching technologies, traffic engineering, control and management, etc. The goal of this Thematic Network aims at building a platform to create synergies and close collaboration among the different Spanish groups with expertise in the Internet topic.

EULER

EULER – Experimental UpdateLess Evolutive Routing
(FP7-258307)
October 2010 – June 2014
Role: Technical Contributor

The main objective of the EULER exploratory research project is to investigate new routing paradigms so as to design, develop, and validate experimentally a distributed and dynamic routing scheme suitable for the future Internet and its evolution. The resulting routing scheme(s) is/are intended to address the fundamental limits of current stretch-1 shortest-path routing in terms of routing table scalability but also topology and policy dynamics (perform efficiently under dynamic network conditions). Therefore, this project will investigate trade-offs between routing table size (to enhance scalability), routing scheme stretch (to ensure routing quality) and communication cost (to efficiently and timely react to various failures). The project will develop appropriate tools to evaluate the performance of the proposed routing schemes on large-scale topologies (order of 10k nodes). Prototype of the routing protocols as well as their functional validation and performance benchmarking on the iLAB experimental facility and/or virtual experimental facilities such as PlanetLab/OneLab will allow validating under realistic conditions the overall behaviour of the proposed routing schemes.

STRONGEST

STRONGEST – Scalable, Tunable and Resilient Optical Networks Guaranteeing Extremely-high Speed Transport
(FP7-247674)
January 2010 – December 2012
Role: Technical Contributor

STRONGEST’s main goal is to design and demonstrate an evolutionary ultra-high capacity multilayer transport network, based on optimized integration of optical and packet nodes, and equipped with a multi-domain, multi-technology control plane, overcoming the problems of current networks that still provide limited scalability, are not cost-effective and do not properly guarantee end-to-end quality of service. STRONGEST is an industry led project; the consortium brings together major European industrial players, leading Telecom operators, Universities and Research Centres and as such, it enables the necessary synergies and creates an ideal environment for innovation and development. The European scale of the project is made necessary by the development of a new reality in which countries and federations are immensely and inextricably linked. To have a common view at European level is essential to apply the project’s outcomes. A major impact from STRONGEST will be to strengthen the position of European industry in the field of Future Internet and to reinforce European leadership in optical networks technologies. The design of a more efficient transport network with reduced cost per bit and the particular attention to energy efficiency will turn into benefit to the entire Community. Network Operators have a tough target to reduce CO2 emissions, whilst at the same time supporting significantly higher information bandwidth. They will use the results of STRONGEST, which will provide the optimum transport network architecture to achieve these targets. STRONGEST results will be exploited by Vendors to develop traffic engineering solutions running in multi-technologies and multi-domain context, and the related control plane in both legacy nodes and new optical/packet nodes. Academic Partners plan to use the STRONGEST results for further enhancement of knowledge transfer, and training and skills creation in the field of telecommunication networks, particularly in the field of optical networks.

ENGINE

ENGINE – Engineering Next Generation Optical Transport NEtworks
(TEC2008-02634)
January 2009 – December 2011
Role: Technical Coordinator

One of the objectives of the ENGINE (Engineering Next Generation optIcal traNsport nEtworks) project will be the upgrade of the ROADM nodes we developed in the framework of the “Red INteligente GMPLS/ASON con Integración de Nodos reconfiGurables (RINGING)” project (TEC-2005-08051-C03-02) to enable transmissions at 10 Gb/s and beyond (40-100 Gb/s). Nevertheless, the leap from 10 Gb/s to higher bit rates poses some technical problems which have to be properly investigated. Typically, when transmission speed is increased, marginal impairments such as polarization mode dispersion (PMD) become pronounced, limiting the transmission distance without signal regeneration. Therefore, another objective of the ENGINE project is also to develop and integrate in the ROADM node, modules for optical signal regeneration, chromatic (CD) and polarization-mode dispersion (PMD) compensation, in combination with wavelenght conversion (WC) techniques. On the other hand, most operators are seeing the control plane as the key factor to migrate from ring-based to meshed-based optical transport network. To migrate, thus, our experimental platform to a mesh topology, another objective of the ENGINE project will be the implementation, starting from the ROADMs, of Optical Cross Connect (OXC) nodes.In such high-capacity reconfigurable optical transport networks, the control plane must manage efficiently available wavelenghts as well as to react in case of degradation of the optical signals due to the physical impariments arisen from the propagation through the optical fibers. In the latter case, the control plane dynamically drops the degraded channels in order to regenerate the signal or to compensate the dispersion. To accomplish to this functionality, therefore, it is of critical value to efficiently monitor the accumulated physical impairments. In this context, another objective of the ENGINE project is to design and demonstrate monitoring techniques for CD and PMD. Moreover, if a 40 Gb/s (and beyond) signal has to travel through DWDM 50 GHz spaced channels, a lot of inter-symbol interference will raise. Multilevel modulation formats reduce the symbol rate and therefore alleviate the influence of impairments while advanced modulation formats together with digital signal processing-enhanced optics will make 40 Gb/s systems possible. In ENGINE, we will investigate on electronic digital signal processing as well as all-optical PMD compensation.The ENGINE project will also design and evaluate routing and wavelenght assignment algorithms which take into account the physical impairments to decide how to accomodate the connection requests triggered from the client networks (IP, SDH, Ethernet, etc.). Such algorithms will be tested over the experimental platform (arising from the RINGING project and completed accomplishing the previous objectives of ENGINE). Assuming that a network must be seen in its overall structure, which means to consider not just the transport layer but also the client networks. The ENGINE project will carry out interwoking studies aimed, firslty, to design efficient dynamic traffic grooming strategies to optimize the bandwidth utilization of the wavelenghts; and secondly, to design coordinated protection strategies between transport and client layers in order to cover a wide set of failures which can occur. In both cases, an MPLS over optical transport layer will be assumed and the designed startegies will be experimentally evaluated. Finally, the potentiality of GMPLS-based control plane to efficiently manage the network resources for hybrid Optical Circuit Switching (OCS) and Optical Burst Switching (OBS) network nodes will be investigated, since OBS networks, capable of switching smaller granularities than wavelenghts in the optical layer, are seen as the long-term solution for optical networks.

BONE

BONE – Building the Future Optical Network in Europe
(FP7-216863)
January 2008 – December 2010
Role: Technical Contributor and WP22 coordinator

The BONE-proposal builds on the foundations laid out by the e-Photon/ONe projects in the previous Framework Programme. This Network of Excellence has successfully brought together over several years the research activities within Europe in the field of Optical Networks. The BONE-project intends to validate this effort by stimulating a more intensified collaboration, exchange of researchers and building on Virtual Centres of Excellence that can serve to European industry with education & training, research tools & testlabs and pave the way to new technologies & architectures.

DICONET

DICONET – Dynamic Impairment Constraint Networking for Transparent Mesh Optical Networks
(FP7-216338)
January 2008 – June 2010
Role: Technical Contributor

The DICONET project is targeting a novel approach to optical networking providing a disruptive solution for the development of the core network of the future. It is the vision and goal of our consortium to provide ultra high speed end-to-end connectivity with quality of service and high reliability through the use of optimised protocols and routing algorithms that will complement a flexible control and management plane offering flexibility for the future network infrastructure. We plan to investigate, design, implement and test new routing and wavelength assignment algorithms considering as constraints physical impairments that arise in transparent core networks. These algorithms will be incorporated into a novel dynamic network planning tool that would consider dynamic traffic characteristics, varying physical impairment and component characteristics and a reconfigurable optical layer. The use of this novel planning tool in conjunction with proper extensions to the control plane of core optical networks that will be designed, implemented and tested by our consortium will make possible to realize the vision of transparency, while offering efficient resource utilization and strict quality of service guarantees based on certain service level agreements. The combinations of the tools, algorithms and protocols that will developed by the uniquely qualified DICONET consortium together with new technologies and architectures that will be considered as enablers for the network of the future will assist in overcoming the expected long term limitations of current core network capabilities. The DICONET scope and objectives, address dynamic cross-layer network planning and optimization while considering the development of a future transport network infrastructure which ensures fail-safe network configuration and operation. Our approach will greatly contribute as a basic element in achieving resilience and transparency of the Future Internet.