Cost804 Energy efficiency in large scale distributed systems

23 January 2009 – 4 May 2013
ICT Action IC0804

This COST Action will propose realistic energy-efficient alternate solutions to share IT distributed resources. While much effort is nowadays put into hardware specific solutions to lower energy consumptions, the need for a complementary approach is necessary at the distributed system level, i.e. middleware, network and applications. The Action will characterize the energy consumption and energy efficiencies of distributed applications. Then based on the current hardware adaptation possibilities and innovative algorithms it will propose adaptive and alternative approaches taking into account the energy saving dimension of the problem. The Action will characterize the trade-off between energy savings and functional and non-functional parameters, including the economic dimension.

Strongest Scalable Tunable and Resilient Optical Networks Guaranteeing Extremely-high Speed Transport

January 2010 – December 2012
FP7-247674

STRONGEST leverages on the definition of innovative architectures for developing a scalable, resilient and cost-effective transport network, offering ultra-high capacity to the end users in the broadband society of the future. The new architectures will take into account the evolution of the access network technologies, in order to ensure transparent core-access integration, but the studies carried out by the project will focus mainly on the metro and core areas, because these are the part of the network where the main scalability issues are foreseen in the next years.

Fierro Future Internet: Eficiencia en las redes de altas prestaciones

May 2011 – September 2012
TEC2010-12250-E

FIERRO es una Red Temática que agrupa a 21 Universidades, Centros de Investigación y empresas españolas, que investigan en los retos tecnológicos que la Internet del Futuro (Future Internet) plantea en la red IP de altas prestaciones. Con esto nos referimos a las redes de comunicaciones de alta velocidad, por ejemplo con agregados de tráfico de 10 Gbps en adelante.

Pervasive and Convergent Networking

January 2010 – December 2010
TEC2009-13252

The main goal of this project is to contribute in the design of technologies for a converged and pervasive Internet. The project aims to push new services and protocols into the network considering them as coupled processes. To do that, we will take into consideration four of the most relevant aspects that are currently of interest of the research community in this field. These are the optical transport, the ubiquitous connectivity, the application of a traffic analysis and monitoring techniques for the management and control of the network, and the security of communications. In order to address these aspects the project is structured in the following research activities: Architectures for the Pervasive Networking, Traffic monitoring and analysis, Converged Optical Networking Infrastructure, and Digital Identity and Electronic Signature, which coincide with of the different subareas of expertise of the Broadband Communication Systems research group that traditionally have exploited participating in separated projects.

Bone Building the future optical network in Europe

January 2008 – February 2011
FP7-216863

BONE intends to validate the research activities within Europe in the field of optical networks by stimulating intensified collaboration, exchange of researchers and building on Virtual Centres of Excellence.

Diconet Dynamic impairment constraint network for transparent mesh optical networks

January 2008 – June 2010
FP7-216338

DICONET plans to investigate, design, implement and test new routing and wavelength assignment algorithms considering as constraints physical impairments that arise in transparent core networks.

Proyecto coordinado para a evaluación de tecnologías y arquitecturas de redes ópticas

December 2005 – December 2008
TEC2005-08051-C03-01

The purpose of the CATARO project (a coordinated project for the evaluation o optical networks technologies and architectures) is to continue the studies carried out in two previous projects, namely TRIPODE (IP traffic transport over Optical networks: Designing and Evaluation, Ref.: TIC2002-04344-C02) and CARISMA (Connection and access to RedIRIS2 through a multi-channel optical ring, CICYT TIC2000-0304-P4-04). Thereby, the CATARO project consists of two subprojects, namely SENDERO (Designing and Evaluation of optical network architectures Ref.: TEC2005-08051-C3-01) and RINGING (GMPLS/ASON Intelligent Network: Integration of reconfigurable nodes, Ref.: TEC2005-08051-C3-02), which are summarized next.

COST291 Towards Digital Ooptical Networks

July 2004 – June 2008

The COST 291 Action ‘Towards digital optical networks’ belongs to the COST Domain: Telecommunications Information Science and Technology. The primary objective of this action is to focus on novel network concepts and architectures exploiting the features of photonic technologies, to enable future broadband telecommunications networks (access, metro and core). It is aiming to propose a new generation of systems and networks that will accommodate the unpredictable growth of data traffic. The action was initiated by the ‘High-speed networks and optical communications’ group of AIT and Prof. Ioannis Tomkos acts as Action Chairman. More than 28 partners contribute to the activities of the project (including several from new member states).

e-Photon/ONe+ Optical Networks: Towards Bandwidth Manageability and Cost Efficiency

March 2006 – February 2008
FP6-027497

The Network of Excellence e-Photon/ONe+ aims at integrating and focusing the rich know-how available in Europe on optical communication and networks, both in universities and in research centres of major telecom manufacturers and operators. This project built upon the experience gained within the previous NoE e-Photon/ONe, funded within the 1st IST call of FP6. The set of expertises available in the NoE ranges from optical technologies to networking devices, network architectures and protocols, new services fostered by photonic technologies.

Nobel2 Next Generation Optical Networks for Broadband European Leadership – phase 2

March 2006 – February 2008
FP6-027305

Leveraging all results obtained in phase 1, NOBEL phase 2 will consider the medium-term, long-term and extended long-term scenarios, focusing in particular on the last two, and will face with two major challenges. The first is the evolution of the data plane technology in order to reach an ‘optimum techno-economic balance’ between optical/electrical and circuit/packet routing and switching. The second is the evolution of the network control plane towards an unified control plane that is able of improving the seamless end-to-end network service capabilities in a flexible and scalable way. Moreover, NOBEL phase 2 will consider the opportunity deriving from the convergence of fixed and mobile services, analysing its impact on the metro and core parts of the network. To achieve the overall goals of NOBEL phase 2, the following main objectives were identified.